Almagro Zabalza, Goizeder

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Almagro Zabalza

First Name

Goizeder

person.page.departamento

Instituto de Agrobiotecnología (IdAB)

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 1 of 1
  • PublicationOpen Access
    Glucose-6-P/phosphate translocator2 mediates the phosphoglucose-isomerase1-independent response to microbial volatiles
    (Oxford University Press, 2022) Gámez Arcas, Samuel; Muñoz, Francisco José; Ricarte Bermejo, Adriana; Sánchez López, Ángela María; Baslam, Marouane; Baroja Fernández, Edurne; Bahaji, Abdellatif; Almagro Zabalza, Goizeder; Diego, Nuria de; Dolezal, Karel; Novák, Ondrej; Leal-López, Jesús; León Morcillo, Rafael Jorge; Castillo, Araceli G.; Pozueta Romero, Javier; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    In Arabidopsis (Arabidopsis thaliana), the plastidial isoform of phosphoglucose isomerase (PGI1) mediates photosynthesis, metabolism, and development, probably due to its involvement in the synthesis of isoprenoid-derived signals in vascular tissues. Microbial volatile compounds (VCs) with molecular masses of 545 Da promote photosynthesis, growth, and starch overaccumulation in leaves through PGI1-independent mechanisms. Exposure to these compounds in leaves enhances the levels of GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSLOCATOR2 (GPT2) transcripts. We hypothesized that the PGI1-independent response to microbial volatile emissions involves GPT2 action. To test this hypothesis, we characterized the responses of wild-type (WT), GPT2-null gpt2-1, PGI1-null pgi1-2, and pgi1-2gpt2-1 plants to small fungal VCs. In addition, we characterized the responses of pgi1-2gpt2-1 plants expressing GPT2 under the control of a vascular tissue- and root tip-specific promoter to small fungal VCs. Fungal VCs promoted increases in growth, starch content, and photosynthesis in WT and gpt2-1 plants. These changes were substantially weaker in VC-exposed pgi1-2gpt2-1 plants but reverted to WT levels with vascular and root tip-specific GPT2 expression. Proteomic analyses did not detect enhanced levels of GPT2 protein in VC-exposed leaves and showed that knocking out GPT2 reduced the expression of photosynthesis-related proteins in pgi1-2 plants. Histochemical analyses of GUS activity in plants expressing GPT2-GUS under the control of the GPT2 promoter showed that GPT2 is mainly expressed in root tips and vascular tissues around hydathodes. Overall, the data indicated that the PGI1-independent response to microbial VCs involves resetting of the photosynthesis-related proteome in leaves through long-distance GPT2 action.