Person: Almagro Zabalza, Goizeder
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Almagro Zabalza
First Name
Goizeder
person.page.departamento
Instituto de Agrobiotecnología (IdAB)
person.page.instituteName
ORCID
0000-0001-7035-9965
person.page.upna
9716
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Genome-wide screening of genes whose enhanced expression affects glycogen accumulation in Escherichia coli(Oxford University Press, 2010) Eydallin, Gustavo; Montero Macarro, Manuel; Almagro Zabalza, Goizeder; Sesma Pascual, María Teresa; Viale Bailone, Alejandro M.; Muñoz Pérez, Francisco José; Rahimpour, Mehdi; Baroja Fernández, Edurne; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaUsing a systematic and comprehensive gene expression library (the ASKA library), we have carried out a genome-wide screening of the genes whose increased plasmid-directed expression affected glycogen metabolism in Escherichia coli. Of the 4123 clones of the collection, 28 displayed a glycogen-excess phenotype, whereas 58 displayed a glycogen-deficient phenotype. The genes whose enhanced expression affected glycogen accumulation were classified into various functional categories including carbon sensing, transport and metabolism, general stress and stringent responses, factors determining intercellular communication, aggregative and social behaviour, nitrogen metabolism and energy status. Noteworthy, one-third of them were genes about which little or nothing is known. We propose an integrated metabolic model wherein E. coli glycogen metabolism is highly interconnected with a wide variety of cellular processes and is tightly adjusted to the nutritional and energetic status of the cell. Furthermore, we provide clues about possible biological roles of genes of still unknown functions.Publication Open Access Systematic production of inactivating and non-inactivating suppressor mutations at the relA locus that compensate the detrimental effects of complete spoT loss and affect glycogen content in Escherichia coli(Public Library of Science, 2014) Montero Macarro, Manuel; Rahimpour, Mehdi; Viale Bailone, Alejandro M.; Almagro Zabalza, Goizeder; Eydallin, Gustavo; Sevilla, Ángel; Cánovas, Manuel; Bernal, Cristina; Lozano, Ana Belén; Muñoz Pérez, Francisco José; Baroja Fernández, Edurne; Bahaji, Abdellatif; Mori, Hirotada; Codoñer, Francisco M.; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn Escherichia coli, ppGpp is a major determinant of growth and glycogen accumulation. Levels of this signaling nucleotide are controlled by the balanced activities of the ppGpp RelA synthetase and the dual-function hydrolase/synthetase SpoT. Here we report the construction of spoT null (DspoT) mutants obtained by transducing a DspoT allele from DrelADspoT double mutants into relA+ cells. Iodine staining of randomly selected transductants cultured on a rich complex medium revealed differences in glycogen content among them. Sequence and biochemical analyses of 8 DspoT clones displaying glycogen-deficient phenotypes revealed different inactivating mutations in relA and no detectable ppGpp when cells were cultured on a rich complex medium. Remarkably, although the co-existence of DspoT with relA proficient alleles has generally been considered synthetically lethal, we found that 11 DspoT clones displaying high glycogen phenotypes possessed relA mutant alleles with non-inactivating mutations that encoded stable RelA proteins and ppGpp contents reaching 45–85% of those of wild type cells. None of the DspoT clones, however, could grow on M9-glucose minimal medium. Both Sanger sequencing of specific genes and high-throughput genome sequencing of the DspoT clones revealed that suppressor mutations were restricted to the relA locus. The overall results (a) defined in around 4 nmoles ppGpp/g dry weight the threshold cellular levels that suffice to trigger net glycogen accumulation, (b) showed that mutations in relA, but not necessarily inactivating mutations, can be selected to compensate total SpoT function(s) loss, and (c) provided useful tools for studies of the in vivo regulation of E. coli RelA ppGpp synthetase.