Person:
Samanes Pascual, Javier

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Samanes Pascual

First Name

Javier

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

ORCID

0000-0002-0192-3814

person.page.upna

811008

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Dual-stage control strategy for a three-level neutral point clamped converter with selective harmonic mitigation PWM
    (IEEE, 2023-11-01) Rosado Galparsoro, Leyre; Norambuena, Margarita; Samanes Pascual, Javier; Lezana, Pablo; Gubía Villabona, Eugenio; López Taberna, Jesús; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Grid-connected converters must meet the requirements imposed by grid codes, such as harmonic emission limits and grid voltage support during voltage dips. Selective harmonic mitigation pulsewidth modulation (SHMPWM) is a very interesting technique for high power converters to meet the maximum harmonic emission levels, while keeping a low switching frequency. However, the combination of this modulation with a proportional integral (PI) controller requires slow dynamics, which makes it difficult to comply with the dynamic response requirements of grid codes. As an alternative, model predictive control (MPC) offers a very fast dynamic response, but a wide spread harmonic spectrum in steady state. Thus, the combination of MPC with a PI controller with SHMPWM is advantageous. In this work, a dual-stage control strategy is implemented. During transients, finite control set MPC (FCS-MPC) is activated to rapidly drive the current to the desired reference, while in steady state, the PI controller with SHMPWM is used. Therefore, the dual-stage control strategy allows to comply with the two requirements of grid codes, becoming a suitable strategy for grid-connected converters.
  • PublicationOpen Access
    Selective harmonic mitigation: limitations of classical control strategies and benefits of model predictive control
    (IEEE, 2023) Rosado Galparsoro, Leyre; Samanes Pascual, Javier; Gubía Villabona, Eugenio; López Taberna, Jesús; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Selective harmonic mitigation pulsewidth modulation (SHMPWM) combined with model predictive control (MPC) is a promising approach for grid-connected power converters. SHMPWM can guarantee grid code compliance in steady state, e.g. grid harmonic injection, with a reduced output converter filter, while MPC improves dynamic response and allows grid code compliance in the event of grid transients. This paper presents a survey of the MPC strategies already published in the literature developed for their use with SHMPWM. The existing strategies fall into two categories: direct model predictive control with an implicit selective harmonic mitigation modulator, and direct model predictive control based on finite control set (FCS-MPC). One representative control strategy of each group is compared to each other and to the performance of classical proportional- integral (PI) controllers combined with SHMPWM. The goal is to identify the potential benefits of MPC for grid-connected power converters, and determine the main advantages and limitations of the two selected state-of-the-art control strategies. Their performance is assessed through Hardware-in-the-Loop (HIL) experimental results in terms of real-time implementation, harmonic content grid code compliance, dynamic response and performance under grid transients.