Samanes Pascual, Javier
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Samanes Pascual
First Name
Javier
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Control design and stability analysis of power converters: the discrete generalized Bode criterion(IEEE, 2021) Urtasun Erburu, Andoni; Samanes Pascual, Javier; Barrios Rípodas, Ernesto; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenFor the controller design and stability analysis of power electronic converters, the Bode stability criterion and its subsequent revisions are the most practical tools. However, even though the control of the power converter is usually implemented in a microprocessor, none of these methods is infallible when applied to a discrete system. This article therefore proposes a new stability criterion, named the Discrete Generalized Bode Criterion (DGBC). This method is based on the Nyquist criterion but developed from the open-loop Bode diagram, evaluated also at 0 Hz and at the Nyquist frequency. The proposed criterion combines the advantages of the Nyquist and Bode criteria, since it is always applicable and provides an interesting and useful tool for the controller design process. The method is applied to design an active damping control of an inverter with LCL filter, showing how the proposed criterion accurately predicts stability, in contrast to the existing Bode criteria. The theoretical analysis is validated through experimental results performed with a three-phase inverter and an LCL filter.Publication Open Access Single-loop droop control strategy for a grid-connected DFIG wind turbine(IEEE, 2023) Oraa Iribarren, Iker; Samanes Pascual, Javier; López Taberna, Jesús; Gubía Villabona, Eugenio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCWhen grid-forming droop control strategies are implemented in grid-connected power converters, two control strategies are widely used: the single-loop and multiloop droop controls. However, only multiloop droop control strategies with inner control loops have been implemented in doubly fed induction generator (DFIG)-based wind turbines so far. This article proposes the application of a single-loop droop control strategy to a DFIG wind turbine, which has not been previously explored or implemented. As shown in the article, the application of the conventional droop control without inner control loops to DFIG-based wind power systems does not ensure a stable response. After modeling the system dynamics and evaluating its stability, two causes of instability have been identified: a resonance at the rotor electrical frequency relevant at high slips and a phase margin reduction at low slips. To solve these instability issues two control solutions are proposed: the emulation of a virtual resistor and a phase rotation. The proposed control strategy allows stabilizing the system and achieving a fast and damped dynamic response. The effectiveness of the proposed control strategy is validated by experimental results.