Salcedo Pérez, Daniel
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Salcedo Pérez
First Name
Daniel
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access Study and optimization of the punching process of steel using the Johnson-Cook damage model(MDPI, 2024) Claver Alba, Adrián; Hernández Acosta, Andrea; Barba Areso, Eneko; Fuertes Bonel, Juan Pablo; Torres Salcedo, Alexia; García Lorente, José Antonio; Luri Irigoyen, Rodrigo; Salcedo Pérez, Daniel; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2Sheet metal forming processes are widely used in applications such as those in the automotive or aerospace industries. Among them, punching is of great interest due to its high productivity and low operating cost. However, it is necessary to optimize these processes and adjust their parameters, such as clearance, shear force or tool geometry, to obtain the best finishes and minimize crack generation. Thus, the main objective of this research work is to optimize the punching process to achieve parts that do not require subsequent processes, such as deburring, by controlling the properties of the starting materials and with the help of tools such as design of experiments and simulations. In the present study, tensile tests were performed on three steels with different compositions and three sample geometries. The information obtained from these tests has allowed us to determine the parameters of the Johnson-Cook damage criteria. Moreover, punching was performed on real parts and compared with simulations to analyze the percentage of burnish surface. The results obtained show that the methodology used was correct and that it can be extrapolated to other types of die-cutting processes by reducing the percentage of surface fractures and predicting the appearance of cracks. Furthermore, it was observed that clearance has a greater influence than processing speed, while the minimum percentage of the burnish area was observed for the minimum values of clearance.Publication Open Access Influence of friction coefficient on the performance of cold forming tools(MDPI, 2023) Barba Areso, Eneko; Salcedo Pérez, Daniel; Claver Alba, Adrián; Luri Irigoyen, Rodrigo; García Lorente, José Antonio; Ingeniería; IngeniaritzaThe automotive industry has undergone significant advancements and changes over time, resulting in the use of more complex parts in modern vehicles. As a consequence, the parts used in the manufacturing process are subject to higher stress levels, which reduce their service life. To mitigate this issue, surface treatments can be applied to improve the mechanical properties of the tools. In this study, we examined the impact of surface treatments on reducing tool stress during a cold forming process. The process involved reducing the thickness of a sheet from 6 mm to 2.5 mm, which generated high stresses in the tooling. We used finite element stress calculations to analyze the process and found that by reducing the friction coefficient to 0.1, tool stresses can be reduced by 20%, leading to an increase in tool life. Moreover, the press force and tool wear were also reduced by 18%. To validate the theoretical calculations, we performed field tests in a real manufacturing process.Publication Open Access Experimental and FEM analysis of wear behaviour in AA5083 ultrafine-grained cams(MDPI, 2020) Luis Pérez, Carmelo Javier; Luri Irigoyen, Rodrigo; Fuertes Bonel, Juan Pablo; León Iriarte, Javier; Salcedo Pérez, Daniel; Puertas Arbizu, Ignacio; Ingeniería; IngeniaritzaSevere plastic deformation (SPD) processes have attracted a great deal of both scientific and technological interest over the last few years as a consequence of the improvements that are possible to obtain in the microstructure and mechanical properties of the materials manufactured through the use of these kind of processes. However, the practical applications of such materials to obtain mechanical components are significantly fewer. As a direct consequence, the same thing has been observed in the development of studies that show the in-service behaviour of the mechanical components developed in this way. Since one of the industrial objectives of these SPD processes is to obtain functional parts, it is necessary to carry out studies to fill this gap. Therefore, in this study, an analysis of the wear that cams undergo when manufactured from an AA5083 aluminium-magnesium alloy is carried out. The cams were isothermally-forged from materials with and without previous SPD processing by equal channel angular pressing (ECAP). Subsequently, the wear behaviour of these cams was analysed by using specific equipment, which may have been considered to have a block-on-ring configuration, developed for testing in-service wear behaviour of mechanical parts. From this comparative wear study with cams, it is shown that previously-processed materials by ECAP have a better wear performance. Moreover, finite element modelling (FEM) simulations were also included to predict wear in the cams processed in this way. A good agreement between FEM and experimental results was obtained. It is this aspect of performing the wear tests on functional and real mechanical components, and not on laboratory samples, which makes this present research work novel.Publication Open Access Analysis of tribological properties in disks of AA-5754 and AA-5083 aluminium alloys previously processed by equal channel angular pressing and isothermally forged(MDPI, 2020) Luis Pérez, Carmelo Javier; Luri Irigoyen, Rodrigo; Puertas Arbizu, Ignacio; Salcedo Pérez, Daniel; León Iriarte, Javier; Fuertes Bonel, Juan Pablo; Ingeniería; IngeniaritzaIn the present study, the wear behaviour of two aluminium alloys (AA‐5754 and AA‐5083) is analysed where these have been previously processed by severe plastic deformation (SPD) with equal channel angular pressing (ECAP). In order to achieve the objectives of this study, several disks made of these alloys are manufactured by isothermal forging from different initial states. The microstructures of the initial materials analysed in this study have different accumulated deformation levels. In order to compare the properties of the nanostructured materials with those which have not been ECAP‐processed, several disks with a height of 6 mm and a diameter of 35 mm are manufactured from both aluminium alloys (that is, AA‐5754 and AA‐5083) isothermally forged at temperatures of 150 and 200 °C, respectively. These thus‐manufactured disks are tested under a load of 0.6 kN, which is equivalent to a stress mean value of 18 MPa, and at a rotational speed of 200 rpm. In order to determine the wear values, the disks are weighed at the beginning, at 10,000 revolutions, at 50,000 revolutions and at 100,000 revolutions, and then the volume‐loss values are calculated. This study was carried out using specific equipment, which may be considered to have a block‐on‐ring configuration, developed for testing in‐service wear behaviour of mechanical components. From this, the wear coefficients for the two materials at different initial states are obtained. In addition, a comparison is made between the behaviour of the previously ECAP-processed aluminium alloys and those that are non‐ECAP‐processed. A methodology is proposed to determine wear coefficients for the aluminium alloys under consideration, which may be used to predict the wear behaviour. It is demonstrated that AA‐5754 and AA‐5083 aluminium alloys improve wear behaviour after the ECAP process compared to that obtained in non‐ECAP‐processed materials.