Person:
Vidaurre Arbizu, Carmen

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Vidaurre Arbizu

First Name

Carmen

person.page.departamento

Ingeniería Eléctrica y Electrónica

person.page.instituteName

ORCID

0000-0003-3740-049X

person.page.upna

2475

Name

Search Results

Now showing 1 - 10 of 10
  • PublicationOpen Access
    Intermuscular coherence between homologous muscles during dynamic and static movement periods of bipedal squatting
    (American Physiological Society, 2020) Kenville, Rouven; Maudrich, Tom; Vidaurre Arbizu, Carmen; Maudrich, Dennis; Villringer, Arno; Ragert, Patrick; Nikulin, Vadim V.; Estadística e Investigación Operativa; Estatistika eta Ikerketa Operatiboa
    Coordination of functionally coupled muscles is a key aspect of movement execution. Demands on coordinative control increase with the number of involved muscles and joints, as well as with differing movement periods within a given motor sequence. While previous research has provided evidence concerning inter- and intramuscular synchrony in isolated movements, compound movements remain largely unexplored. With this study, we aimed to uncover neural mechanisms of bilateral coordination through intermuscular coherence (IMC) analyses between principal homologous muscles during bipedal squatting (BpS) at multiple frequency bands (alpha, beta, and gamma). For this purpose, participants performed bipedal squats without additional load, which were divided into three distinct movement periods (eccentric, isometric, and concentric). Surface electromyography (EMG) was recorded from four homologous muscle pairs representing prime movers during bipedal squatting. We provide novel evidence that IMC magnitudes differ between movement periods in beta and gamma bands, as well as between homologous muscle pairs across all frequency bands. IMC was greater in the muscle pairs involved in postural and bipedal stability compared with those involved in muscular force during BpS. Furthermore, beta and gamma IMC magnitudes were highest during eccentric movement periods, whereas we did not find movement-related modulations for alpha IMC magnitudes. This finding thus indicates increased integration of afferent information during eccentric movement periods. Collectively, our results shed light on intermuscular synchronization during bipedal squatting, as we provide evidence that central nervous processing of bilateral intermuscular functioning is achieved through task-dependent modulations of common neural input to homologous muscles. NEW & NOTEWORTHY It is largely unexplored how the central nervous system achieves coordination of homologous muscles of the upper and lower body within a compound whole body movement, and to what extent this neural drive is modulated between different movement periods and muscles. Using intermuscular coherence analysis, we show that homologous muscle functions are mediated through common oscillatory input that extends over alpha, beta, and gamma frequencies with different synchronization patterns at different movement periods.
  • PublicationOpen Access
    Sensorimotor functional connectivity: a neurophysiological factor related to BCI performance
    (Frontiers Media, 2020) Vidaurre Arbizu, Carmen; Haufe, Stefan; Jorajuria Gómez, Tania; Müller, Klaus Robert; Nikulin, Vadim V.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Brain-computer interfaces (BCIs) are systems that allow users to control devices using brain activity alone. However, the ability of participants to command BCIs varies from subject to subject. About 20% of potential users of sensorimotor BCIs do not gain reliable control of the system. The inefficiency to decode user's intentions requires the identification of neurophysiological factors determining 'good' and 'poor' BCI performers. One of the important neurophysiological aspects in BCI research is that the neuronal oscillations, used to control these systems, show a rich repertoire of spatial sensorimotor interactions. Considering this, we hypothesized that neuronal connectivity in sensorimotor areas would define BCI performance. Analyses for this study were performed on a large dataset of 80 inexperienced participants. They took part in a calibration and an online feedback session recorded on the same day. Undirected functional connectivity was computed over sensorimotor areas by means of the imaginary part of coherency. The results show that post- as well as pre-stimulus connectivity in the calibration recording is significantly correlated to online feedback performance in μ and feedback frequency bands. Importantly, the significance of the correlation between connectivity and BCI feedback accuracy was not due to the signal-to-noise ratio of the oscillations in the corresponding post and pre-stimulus intervals. Thus, this study demonstrates that BCI performance is not only dependent on the amplitude of sensorimotor oscillations as shown previously, but that it also relates to sensorimotor connectivity measured during the preceding training session. The presence of such connectivity between motor and somatosensory systems is likely to facilitate motor imagery, which in turn is associated with the generation of a more pronounced modulation of sensorimotor oscillations (manifested in ERD/ERS) required for the adequate BCI performance. We also discuss strategies for the up-regulation of such connectivity in order to enhance BCI performance.
  • PublicationEmbargo
    Enhancing sensorimotor BCI performance with assistive afferent activity: an online evaluation
    (Elsevier, 2019) Vidaurre Arbizu, Carmen; Ramos Murguialday, Ander; Haufe, Stefan; Gómez Fernández, Marisol; Müller, Klaus Robert; Nikulin, Vadim V.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    An important goal in Brain-Computer Interfacing (BCI) is tofind and enhance procedural strategies for users for whom BCI control is not sufficiently accurate. To address this challenge, we conducted offline analyses and online experiments to test whether the classification of different types of motor imagery could be improved when the training of the classifier was performed on the data obtained with the assistive muscular stimulation below the motor threshold. 10 healthy participants underwent three different types of experimental conditions: a) Motor imagery (MI) of hands and feet b) sensory threshold neuromuscular electrical stimulation (STM) of hands and feet while resting and c) sensory threshold neuromuscular electrical stimulation during performance of motor imagery (BOTH). Also, another group of 10 participants underwent conditions a) and c). Then, online experiments with 15 users were performed. These subjects received neurofeedback during MI using classifiers calibrated either on MIor BOTH data recorded in the same experiment. Offline analyses showed that decoding MI alone using a classifier based on BOTH resulted in a better BCI accuracy compared to using a classifier based on MI alone. Online experiments confirmed accuracy improvement of MI alone being decoded with the classifier trained on BOTH data. In addition, we observed that the performance in MI condition could be predicted on the basis of a more pronounced connectivity within sensorimotor areas in the frequency bands providing the best performance in BOTH. Thesefinding might offer a new avenue for training SMR-based BCI systems particularly for users having difficulties to achieve efficient BCI control. It might also be an alternative strategy for users who cannot perform real movements but still have remaining afferent pathways (e.g., ALS and stroke patients).
  • PublicationOpen Access
    Sources of linear and non-linear synchrony between brain and muscles: linear and non-linear CMC sources
    (IEEE, 2020) Vidaurre Arbizu, Carmen; Gómez Fernández, Marisol; Nolte, Guido; Villringer, Arno; Carlowitz Ghori, Katherina von; Nikulin, Vadim V.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    This manuscript shows that it is possible to find distinct sources of brain activity, at similar frequencies, arising from linear and non-linear interactions of the brain with the muscular system. Those sources were obtained by maximizing coherence between multivariate signals recorded from brain and a single channel from the muscles. To find linear phase synchrony we used unrectified electromyographic recordings, whereas to de-mix nonlinear sources, we used rectified muscular measurements. In order to obtain the brain sources, we employed a recently published method called 'cacoh' that is able to maximize coherence over the complete frequency range of interest and simultaneously find patterns of sources for each them. Our results show that cortico-muscular interactions even at the same frequency range can have spatially distinct neuronal sources depending on whether interactions had linear or non-linear character.
  • PublicationEmbargo
    Canonical maximization of coherence: a novel tool for investigation of neuronal interactions between two datasets
    (Elsevier, 2019) Vidaurre Arbizu, Carmen; Nolte, Guido; Vries, I. E. J. de; Gómez Fernández, Marisol; Boonstra, Tjeerd W.; Müller, Klaus Robert; Villringer, Arno; Nikulin, Vadim V.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Synchronization between oscillatory signals is considered to be one of the main mechanisms through which neuronal populations interact with each other. It is conventionally studied with mass-bivariate measures utilizing either sensor-to-sensor or voxel-to-voxel signals. However, none of these approaches aims at maximizing syn-chronization, especially when two multichannel datasets are present. Examples include cortico-muscular coherence (CMC), cortico-subcortical interactions or hyperscanning (where electroencephalographic EEG/magnetoencephalographic MEG activity is recorded simultaneously from two or more subjects). For all of these cases, a method which could find two spatial projections maximizing the strength of synchronization would be desirable. Here we present such method for the maximization of coherence between two sets of EEG/MEG/EMG(electromyographic)/LFP (localfield potential) recordings. We refer to it as canonical Coherence (caCOH). caCOH maximizes the absolute value of the coherence between the two multivariate spaces in the frequency domain. Thisallows very fast optimization for many frequency bins. Apart from presenting details of the caCOH algorithm, we test its efficacy with simulations using realistic head modelling and focus on the application of caCOH to the detection of cortico-muscular coherence. For this, we used diverse multichannel EEG and EMG recordings and demonstrate the ability of caCOH to extract complex patterns of CMC distributed across spatial and frequency domains. Finally, we indicate other scenarios where caCOH can be used for the extraction of neuronal interactions.
  • PublicationOpen Access
    MEANSP: How many channels are needed to predict the performance of a SMR-Based BCI?
    (IEEE, 2023) Jorajuria Gómez, Tania; Nikulin, Vadim V.; Kapralov, Nikolai; Gómez Fernández, Marisol; Vidaurre Arbizu, Carmen; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Predicting whether a particular individual would reach an adequate control of a Brain-Computer Interface (BCI) has many practical advantages. On the one hand, participants with low predicted performance could be trained with specifically designed sessions and avoid frustrating experiments; on the other hand, planning time and resources would be more efficient; and finally, the variables related to an accurate prediction could be manipulated to improve the prospective BCI performance. To this end, several predictors have been proposed in the literature, most of them based on the power estimation of EEG signals at the specific frequency bands. Many of these studies evaluate their predictors in relatively small datasets and/or using a relatively high number of channels. In this manuscript, we propose a novel predictor called MEANSP to predict the performance of participants using BCIs that are based on the modulation of sensorimotor rhythms. This novel predictor has been positively evaluated using only 2, 3, 4 or 5 channels. MEANSP has shown to perform as well as or better than other state-of-the-art predictors. The best sets of different number of channels are also provided, which have been tested in two different settings to prove their robustness. The proposed predictor has been successfully evaluated using two large-scale datasets containing 150 and 80 participants, respectively. We also discuss predictor thresholds for users to expect good performance in feedback experiments and show the advantages in comparison to a competing algorithm.
  • PublicationOpen Access
    Corticomuscular interactions during different movement periods in a multi-joint compound movement
    (Nature Research, 2020) Kenville, Rouven; Maudrich, Tom; Vidaurre Arbizu, Carmen; Maudrich, Dennis; Villringer, Arno; Nikulin, Vadim V.; Ragert, Patrick; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    While much is known about motor control during simple movements, corticomuscular communication profiles during compound movement control remain largely unexplored. Here, we aimed at examining frequency band related interactions between brain and muscles during different movement periods of a bipedal squat (BpS) task utilizing regression corticomuscular coherence (rCMC), as well as partial directed coherence (PDC) analyses. Participants performed 40 squats, divided into three successive movement periods (Eccentric (ECC), Isometric (ISO) and Concentric (CON)) in a standardized manner. EEG was recorded from 32 channels specifically-tailored to cover bilateral sensorimotor areas while bilateral EMG was recorded from four main muscles of BpS. We found both significant CMC and PDC (in beta and gamma bands) during BpS execution, where CMC was significantly elevated during ECC and CON when compared to ISO. Further, the dominant direction of information flow (DIF) was most prominent in EEG-EMG direction for CON and EMG-EEG direction for ECC. Collectively, we provide novel evidence that motor control during BpS is potentially achieved through central motor commands driven by a combination of directed inputs spanning across multiple frequency bands. These results serve as an important step toward a better understanding of brain-muscle relationships during multi joint compound movements.
  • PublicationOpen Access
    Oscillatory source tensor discriminant analysis (OSTDA): a regularized tensor pipeline for SSVEP-based BCI systems
    (Elsevier, 2021) Jorajuria Gómez, Tania; Jamshidi Idaji, Mina; İşcan, Zafer; Gómez Fernández, Marisol; Nikulin, Vadim V.; Vidaurre Arbizu, Carmen; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Periodic signals called Steady-State Visual Evoked Potentials (SSVEP) are elicited in the brain by flickering stimuli. They are usually detected by means of regression techniques that need relatively long trial lengths to provide feedback and/or sufficient number of calibration trials to be reliably estimated in the context of brain-computer interface (BCI). Thus, for BCI systems designed to operate with SSVEP signals, reliability is achieved at the expense of speed or extra recording time. Furthermore, regardless of the trial length, calibration free regression-based methods have been shown to suffer from significant performance drops when cognitive perturbations are present affecting the attention to the flickering stimuli. In this study we present a novel technique called Oscillatory Source Tensor Discriminant Analysis (OSTDA) that extracts oscillatory sources and classifies them using the newly developed tensor-based discriminant analysis with shrinkage. The proposed approach is robust for small sample size settings where only a few calibration trials are available. Besides, it works well with both low- and high-number-of-channel settings, using trials as short as one second. OSTDA performs similarly or significantly better than other three benchmarked state-of-the-art techniques under different experimental settings, including those with cognitive disturbances (i.e. four datasets with control, listening, speaking and thinking conditions). Overall, in this paper we show that OSTDA is the only pipeline among all the studied ones that can achieve optimal results in all analyzed conditions.
  • PublicationOpen Access
    Improving motor imagery classification during induced motor perturbations
    (IOP Publishing, 2021) Vidaurre Arbizu, Carmen; Jorajuria Gómez, Tania; Ramos Murguialday, Ander; Müller, Klaus Robert; Gómez Fernández, Marisol; Nikulin, Vadim V.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Objective. Motor imagery is the mental simulation of movements. It is a common paradigm to design brain-computer interfaces (BCIs) that elicits the modulation of brain oscillatory activity similar to real, passive and induced movements. In this study, we used peripheral stimulation to provoke movements of one limb during the performance of motor imagery tasks. Unlike other works, in which induced movements are used to support the BCI operation, our goal was to test and improve the robustness of motor imagery based BCI systems to perturbations caused by artificially generated movements. Approach. We performed a BCI session with ten participants who carried out motor imagery of three limbs. In some of the trials, one of the arms was moved by neuromuscular stimulation. We analysed 2-class motor imagery classifications with and without movement perturbations. We investigated the performance decrease produced by these disturbances and designed different computational strategies to attenuate the observed classification accuracy drop. Main results. When the movement was induced in a limb not coincident with the motor imagery classes, extracting oscillatory sources of the movement imagination tasks resulted in BCI performance being similar to the control (undisturbed) condition; when the movement was induced in a limb also involved in the motor imagery tasks, the performance drop was significantly alleviated by spatially filtering out the neural noise caused by the stimulation. We also show that the loss of BCI accuracy was accompanied by weaker power of the sensorimotor rhythm. Importantly, this residual power could be used to predict whether a BCI user will perform with sufficient accuracy under the movement disturbances. Significance. We provide methods to ameliorate and even eliminate motor related afferent disturbances during the performance of motor imagery tasks. This can help improving the reliability of current motor imagery based BCI systems.
  • PublicationOpen Access
    Novel multivariate methods to track frequency shifts of neural oscillations in EEG/MEG recordings
    (Elsevier, 2023) Vidaurre Arbizu, Carmen; Gurunandan, Kshipra; Jamshidi Idaji, Mina; Nolte, Guido; Gómez Fernández, Marisol; Villringer, Arno; Müller, Klaus Robert; Nikulin, Vadim V.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Instantaneous and peak frequency changes in neural oscillations have been linked to many perceptual, motor, and cognitive processes. Yet, the majority of such studies have been performed in sensor space and only occasionally in source space. Furthermore, both terms have been used interchangeably in the literature, although they do not reflect the same aspect of neural oscillations. In this paper, we discuss the relation between instantaneous frequency, peak frequency, and local frequency, the latter also known as spectral centroid. Furthermore, we propose and validate three different methods to extract source signals from multichannel data whose (instantaneous, local, or peak) frequency estimate is maximally correlated to an experimental variable of interest. Results show that the local frequency might be a better estimate of frequency variability than instantaneous frequency under conditions with low signal-to-noise ratio. Additionally, the source separation methods based on local and peak frequency estimates, called LFD and PFD respectively, provide more stable estimates than the decomposition based on instantaneous frequency. In particular, LFD and PFD are able to recover the sources of interest in simulations performed with a realistic head model, providing higher correlations with an experimental variable than multiple linear regression. Finally, we also tested all decomposition methods on real EEG data from a steady-state visual evoked potential paradigm and show that the recovered sources are located in areas similar to those previously reported in other studies, thus providing further validation of the proposed methods.