Korili, Sophia A.

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Korili

First Name

Sophia A.

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Synthesis of Cu-Al layered double hydroxides from aluminum saline slags
    (Elsevier, 2023) Boulahbal, Aziza Imene; Santamaría Arana, Leticia; Azizi, A.; Boutahala, Mokhtar; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The use of saline slag, a hazardous waste generated during the recycling of aluminum, as aluminum source for the synthesis CuAl layered double hydroxides (LDH) is for the first time reported in this study. Due to the JahnTeller effect, divalent copper–aluminum LDH come usually with impurities and a pure CuAl LDH is not easy to obtain. The effect of synthesis pH has been examined by comparing LDH synthesized at various pH, ranging from 6 to 12 via a co-precipitation method using aluminum obtained from an alkaline extraction of the slag. For comparison purposes, a sample was synthesized at pH = 9 using commercial aluminum Al(NO3)3⋅9H2O instead of extracted aluminum. The effects of the aging time and calcination temperature are also discussed. The LDH and their calcined metal mixed oxide (layered double oxide, LDO) have been analyzed with several characterization techniques: powder X-ray diffraction (PXRD), N2 adsorption at − 196 ◦C, thermogravimetric analysis (TGA), temperature programmed reduction (TPR), scanning electron microscopy (SEM), transmission electron microscopy and energy-dispersive X-ray spectroscopy (TEM and EDS). Synthesis pH has been proved not only to have a significant effect on the nature of secondary phases but also on the structure and morphology of the samples.
  • PublicationOpen Access
    Enhancing adsorptive performance of Cu-Al layered double hydroxides from aluminum saline slags: Insights from response surface methodology and molecular dynamic simulation
    (Elsevier, 2024-12-01) Boulahbal, Aziza Imene; Santamaría Arana, Leticia; Bourzami, Riahd; Bendrihem, Aymene Salah; Boutahala, Mokhtar; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    This study aims to optimize the adsorption process of gallic acid (GA) on Cu-Al layered double hydroxides (LDHs) synthesized via a co-precipitation method at various pH levels. The procedure is based on the adsorption of organic pollutants from aqueous solutions, with evaluations carried out based on operational parameters such as pH, initial concentration, and adsorbent quantity. Two series of LDHs were compared: one using aluminum extracted from saline slags and the other using a commercial aluminum salt as source of aluminum. Saline slags, a by-product of aluminum recycling, are particularly hazardous due to their high toxicity and potential for environmental contamination. Extracting aluminum from these slags and using it in the synthesis of LDHs not only helps in eliminating a dangerous waste but also creates materials with beneficial environmental applications. The adsorption process was optimized using response surface methodology (RSM) coupled with Box- Behnken design (BBD) to assess the effects of key operational parameters. Besides gallic acid, other organic pollutants such as diclofenac and salicylic acid were also evaluated for removal from aqueous solution. The LDH /LDO were characterized by X-ray diffraction (XRD), ATR infrared spectroscopy (ATR-IR), scanning and transmission electron microscopy (SEM/TEM), thermogravimetric analysis (TGA), and nitrogen adsorption at -196ºC. The merit data indicate that the material synthesized at pH = 9 with extracted aluminum exhibits superior adsorption capacity for gallic acid, demonstrating the highest removal rate, nearly reaching 100 %, and achieving equilibrium more quickly than other samples. This superior adsorption performance is also notable for salicylic acid and diclofenac. After four regeneration cycles, the adsorption rate of the adsorbent remains stable, indicating that CCA9 maintains a consistent and efficient adsorption performance. This highlights the robustness of the material and its high reusability in prolonged adsorption applications. Molecular dynamics simulations (MDS) revealed that the adsorption process occurs spontaneously, driven by weak interactions: van der Waals, intermolecular, hydrogen bonding, π-interactions and short contacts.