Korili, Sophia A.

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Korili

First Name

Sophia A.

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 11
  • PublicationOpen Access
    Adsorption recovery of Ag(I) and Au(III) from an electronics industry wastewater on a clay mineral composite
    (University of Science and Technology Beijing, 2019) Rakhila, Youness; Elmchaouri, Abdellah; Mestari, Allal; Korili, Sophia A.; Abouri, Meriem; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    The aim of this work is to investigate the ability of an adsorbent of a clay mineral composite to remove and recover gold and silver ions from wastewater. The composite was prepared by mixing phosphogypsum (PG), obtained from an industrial waste, and a natural clay mineral. The materials were characterized before and after use in adsorption by several techniques. Batch adsorption experiments were carried out, and the effects of the contact time and the pH and temperature of solution on the removal processes were investigated. The optimum pH for the adsorption was found to be 4. The adsorption of these metal ions reached equilibrium after 2 h of contact. The pseudo-first- and the pseudo-second-order kinetic models, as well as the Freundlich and the Langmuir isotherm equations, were considered to describe the adsorption results. The maximum adsorbed amount of 85 mg·g−1 Ag(I) and 108.3 mg·g−1 Au(III) was found. The recovery of the adsorbed gold and silver ions from the adsorbent was also analyzed. Strong acids appeared to be the best desorption agents to recover gold and silver ions. The use of aqua regia gave regeneration rates close to 95.3% and 94.3% for Ag(I) and Au(III), respectively. Finally, the removal of gold and silver ions from an industrial wastewater was tested in batch experiments, and percentage recoveries of 76.5% and 79.9% for Ag(I) and Au(III), respectively, were obtained. To carry out the industrial application of the proposed methodology, an economic viability study is required.
  • PublicationOpen Access
    Comparative removal of emerging contaminants from aqueous solution by adsorption on an activated carbon
    (Taylor & Francis, 2019) Gil Bravo, Antonio; Taoufik, Nawal; García Mora, Ana María; Korili, Sophia A.; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    Batch sorption experiments were performed to study the adsorption of six emerging pollutants from aqueous solutions using a commercial granular activated carbon as adsorbent. Caffeine, clofibric acid, diclofenac, gallic acid, ibuprofen and salicylic acid were selected as representative contaminants. The activated carbon was characterized by nitrogen adsorption at 77 K, and through the determination of point of zero charge. The effects of several operational parameters, such as pH, initial concentration of organic molecules, mass of adsorbent and contact time, on the sorption behaviour were evaluated. The contact time to attain equilibrium for maximum adsorption was found to be 40 min. The kinetic data were correlated to several adsorption models, and the adsorption mechanism found to follow pseudo-second-order and intraparticle-diffusion models with external mass transfer predominating in the first 15 min of the experiment. The equilibrium adsorption data were analysed using the Freundlich, Langmuir and Toth isotherm equation models. The similar chemical structure and molecular weight of the organic pollutants studied to make the adsorption capacity of the activated carbon used very similar for all the molecules.
  • PublicationEmbargo
    Improvement of the adsorption properties of an activated carbon coated by titanium dioxide for the removal of emerging contaminants
    (Elsevier, 2019) Taoufik, Nawal; Elmchaouri, Abdellah; Anouar, Fatna; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    Three activated carbon coated titanium dioxide composites are evaluated as adsorbents for the removal of three pharmaceutical compounds: clofibric, gallic and salicylic acids from aqueous solutions. These composite materials are characterized by several techniques as SEM, FT-IR, TGA and point of zero charge determination. The adsorption mechanism of acids was investigated and compared to the adsorption on the virgin carbon. The analysis of adsorption isotherms and kinetic properties reveals that the addition of TiO2 increased the adsorption capacities of the initial material. The adsorption kinetics has been studied in terms of pseudo-first and pseudo-second order kinetic models, and the Freundlich, Langmuir, Temkin, Tôth and Sips isotherms models have also been applied to the equilibrium adsorption data. The analysis of results indicated that the adsorption of acids on the activated carbon-titanium dioxide composites is well described by the pseudo-first order kinetic model and the Sips isotherm equation fitted the sorption experimental results better than other models.
  • PublicationOpen Access
    Saline slag waste as an aluminum source for the synthesis of Zn–Al–Fe–Ti layered double-hydroxides as catalysts for the photodegradation of emerging contaminants
    (Elsevier, 2020) Santamaría Arana, Leticia; Vicente, Miguel Ángel; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua, PI017-PI039 CORRAL
    In this work, aluminum extracted from saline slag waste is valorized to create a layered double-hydroxide series containing zinc and various proportions of aluminum/titanium. Materials were synthesized by the co-precipitation method with an Me2+/Me3+ molar ratio of 3:1 and tested for the removal of diclofenac and salicylic acid from water under UV radiation. The incorporation of 5 wt% iron by wet impregnation is evaluated. In addition, another series of zinc, aluminum/iron materials with and without 5 wt% impregnated titanium are tested as catalysts for comparison. Structural characterization and comparison of the two series was performed by powder X-ray diffraction (PXRD), nitrogen adsorption at 77 K, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) measurements. The uncalcinated samples had a typical hydrotalcite structure with a high crystallinity; the presence of ZnO, ZnFe2O4 or Fe3O4 was found after calcination. The specific surface areas of the dried samples ranged from 78 to 199 m2/g, being highest for Zn6Al0.5Ti1.5. Overall, the results showed that the ZnAlTi series were more effective catalysts than ZnAlFe for photodegradation of the emerging contaminants diclofenac and salicylic acid, under UV light at 298 K, considering two concentrations of the organic molecules (5 and 50 μmol/dm3).
  • PublicationOpen Access
    Progress in the removal of pharmaceutical compounds from aqueous solution using layered double hydroxides as adsorbents: a review
    (Elsevier, 2020) Santamaría Aquilué, Rafael; Vicente, Miguel Ángel; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Emerging contaminants and, among them, pharmaceutical compounds, have a significant impact on water ecosystems. Layered Double Hydroxides (LDH), being easy to synthesize and cheap materials, have recently gained attention as adsorbents in aqueous solutions. This work describes the latest research performed in the adsorption capacity of LDH towards both antibiotics and Non-Steroidal Anti-Inflammatory Drugs (NSAID) describing and analyzing the synthesis conditions (Me2+:Me3+ molar ratio, calcination temperature, choice of metals for the memory effect), kinetics and isotherm models used, use of support (more practical in a 3D over a 2D form), temperature effect and several techniques for the recovery of the adsorbents. LDH exhibited great performance and potential as clean adsorbents for these emerging contaminants.
  • PublicationOpen Access
    Optimizing the removal of nitrate by adsorption onto activated carbon using response surface methodology based on the central composite design
    (Taylor & Francis, 2020) Taoufik, Nawal; Elmchaouri, Abdellah; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    This study sheds light on the adsorption process for the removal of nitrate ions from synthetic aqueous solutions. This contaminant pose a potential risk to the environment and can cause health effects including cancers and methemoglobinemia in infants. When the adsorption process is carried out, the effect by the several operating parameters such as initial nitrate concentration, pH, mass of activated carbon, and contact time becomes apparent. The essential process variables are optimized using response surface methodology (RSM) based on the central composite design (CCD) experiments. For this purpose 31 experimental results are required to determine the optimum conditions. The optimum conditions for the removal of nitrates is found to be: initial nitrate concentration = 15 mg/L; initial pH 4.0; mass of activated carbon = 25 mg, and contact time = 70 min. At these optimized conditions, the maximum removal of nitrates is found to be 96.59%.
  • PublicationOpen Access
    Use of response surface methodology to optimize triclosan adsorption on alumina pillared clays in a fixed-bed column for applications in solid-phase extraction
    (Elsevier, 2023-04-01) Cardona Rodríguez, Yaneth; Korili, Sophia A.; Gil Bravo, Antonio; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Fixed-bed column studies are generally conducted to consider possible applications in water-purification processes. In this work, three synthetic alumina pillared interlayered clays (Al-PILC) were analyzed in fixed-bed column studies for use as sorbents for solid-phase extraction (SPE) for the first time. Adsorption processes were studied for triclosan (TCS), which is an emerging pollutant (EP) that has been shown to have several health effects. Breakthrough curves were investigated by varying process parameters such as bed height (0.25–0.75 cm), inlet TCS concentration (20–60 mg/cm3 ), and flow rate (0.5–3 cm3 /min). Bohart-Adams, Bed Depth Service Time (BDST), and Thomas models were satisfactory applied to the results obtained for fixed-bed columns. The adsorption of TCS was successfully optimized for use in SPE for the three adsorbents studied using response surface methodology with a Box–Behnken design (RSM-BBD). The models developed were adequate for the experimental data (95% significance level), with high regression parameters (98.9–99.1). The optimum values for TCS adsorption on the fixed-bed column were 378.04, 367.78, and 378.93 mg (amount of adsorbent packed into the column), 0.5 cm3 /min (flow rate), 4.24, 3.96, and 3.85 (pH), and 2.56, 1.93, and 1.13 mg/dm3 (inlet TCS concentration) for Al-PILCAE, Al-PILCBE, and Al-PILCCM, respectively. From these results synthetic Al-PILC are effective and promising sorbents that can be used for analytical purposes in SPE, and that RSM-BDD is an effective and reliable tool for evaluating and optimizing the adsorption conditions for emerging contaminants in a fixed-bed column system.
  • PublicationOpen Access
    Enhancing adsorptive performance of Cu-Al layered double hydroxides from aluminum saline slags: Insights from response surface methodology and molecular dynamic simulation
    (Elsevier, 2024-12-01) Boulahbal, Aziza Imene; Santamaría Arana, Leticia; Bourzami, Riahd; Bendrihem, Aymene Salah; Boutahala, Mokhtar; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    This study aims to optimize the adsorption process of gallic acid (GA) on Cu-Al layered double hydroxides (LDHs) synthesized via a co-precipitation method at various pH levels. The procedure is based on the adsorption of organic pollutants from aqueous solutions, with evaluations carried out based on operational parameters such as pH, initial concentration, and adsorbent quantity. Two series of LDHs were compared: one using aluminum extracted from saline slags and the other using a commercial aluminum salt as source of aluminum. Saline slags, a by-product of aluminum recycling, are particularly hazardous due to their high toxicity and potential for environmental contamination. Extracting aluminum from these slags and using it in the synthesis of LDHs not only helps in eliminating a dangerous waste but also creates materials with beneficial environmental applications. The adsorption process was optimized using response surface methodology (RSM) coupled with Box- Behnken design (BBD) to assess the effects of key operational parameters. Besides gallic acid, other organic pollutants such as diclofenac and salicylic acid were also evaluated for removal from aqueous solution. The LDH /LDO were characterized by X-ray diffraction (XRD), ATR infrared spectroscopy (ATR-IR), scanning and transmission electron microscopy (SEM/TEM), thermogravimetric analysis (TGA), and nitrogen adsorption at -196ºC. The merit data indicate that the material synthesized at pH = 9 with extracted aluminum exhibits superior adsorption capacity for gallic acid, demonstrating the highest removal rate, nearly reaching 100 %, and achieving equilibrium more quickly than other samples. This superior adsorption performance is also notable for salicylic acid and diclofenac. After four regeneration cycles, the adsorption rate of the adsorbent remains stable, indicating that CCA9 maintains a consistent and efficient adsorption performance. This highlights the robustness of the material and its high reusability in prolonged adsorption applications. Molecular dynamics simulations (MDS) revealed that the adsorption process occurs spontaneously, driven by weak interactions: van der Waals, intermolecular, hydrogen bonding, π-interactions and short contacts.
  • PublicationOpen Access
    Progress and perspectives for the use of pillared clays as adsorbents for organic compounds in aqueous solution
    (De Gruyter, 2022-09-14) Cardona Rodríguez, Yaneth; Vicente, Miguel Ángel; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    The world is faced with several problems as regards water pollution. This is due to several factors, including the discharge of effluents into the environment with no prior treatment. This wastewater, therefore, contains significant levels of pollutants, including numerous toxic organic contaminants and others that are similarly undesirable. Several studies have attempted to find ways of removing wastewater contaminants using pillared interlayered clays (PILC) as adsorbents. In this work, we present a summary of those studies that have used PILC as adsorbents for the removal of organic compounds from aqueous solutions while simultaneously illustrating their potential for this purpose. A general overview is provided so that the reader can acquire a basic understanding of the PILC and their modified counterparts that have been used, and some of the characteristics that can directly affect their adsorption behavior, especially their textural and surface properties.
  • PublicationOpen Access
    Adsorption of rhodamine 6G and humic acids on composite bentonite-alginate in single and binary systems
    (Springer, 2018) Gomri, Fatima; Finqueneisel, Gisele; Zimny, Thierry; Korili, Sophia A.; Gil Bravo, Antonio; Boutahala, Mokhtar; Institute for Advanced Materials and Mathematics - INAMAT2
    In this work, the preparation, characterization, and sorption of rhodamine 6G and humic acids on a composite sodium alginate-bentonite were investigated. Their structure and morphology were analyzed by several techniques, including Fourier transform infrared spectroscopy, X-ray diffraction, and N-2 adsorption at - 196 degrees C. A synergetic sorption mechanism was observed in binary systems; humic acids adsorption was enhanced by the presence of Rh6G in the mixture. The kinetic studies revealed that the sorption follows a pseudo-first-order kinetic model and the sorption capacities of Rh6G increased with the pH value. The Langmuir isothermal model well described the adsorption isotherm data, showing a maximum adsorption capacity for Rh6G up to 429.5 mg/g at 20 degrees C. On the basis of the data of the present investigation, it is possible to conclude that the composite exhibited excellent affinity for the dye and humic acids, and it can be applied to treat wastewater containing dye and natural organic matter.