Korili, Sophia A.
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Korili
First Name
Sophia A.
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Saline slag waste as an aluminum source for the synthesis of Zn–Al–Fe–Ti layered double-hydroxides as catalysts for the photodegradation of emerging contaminants(Elsevier, 2020) Santamaría Arana, Leticia; Vicente, Miguel Ángel; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua, PI017-PI039 CORRALIn this work, aluminum extracted from saline slag waste is valorized to create a layered double-hydroxide series containing zinc and various proportions of aluminum/titanium. Materials were synthesized by the co-precipitation method with an Me2+/Me3+ molar ratio of 3:1 and tested for the removal of diclofenac and salicylic acid from water under UV radiation. The incorporation of 5 wt% iron by wet impregnation is evaluated. In addition, another series of zinc, aluminum/iron materials with and without 5 wt% impregnated titanium are tested as catalysts for comparison. Structural characterization and comparison of the two series was performed by powder X-ray diffraction (PXRD), nitrogen adsorption at 77 K, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) measurements. The uncalcinated samples had a typical hydrotalcite structure with a high crystallinity; the presence of ZnO, ZnFe2O4 or Fe3O4 was found after calcination. The specific surface areas of the dried samples ranged from 78 to 199 m2/g, being highest for Zn6Al0.5Ti1.5. Overall, the results showed that the ZnAlTi series were more effective catalysts than ZnAlFe for photodegradation of the emerging contaminants diclofenac and salicylic acid, under UV light at 298 K, considering two concentrations of the organic molecules (5 and 50 μmol/dm3).Publication Open Access Progress in the removal of pharmaceutical compounds from aqueous solution using layered double hydroxides as adsorbents: a review(Elsevier, 2020) Santamaría Aquilué, Rafael; Vicente, Miguel Ángel; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaEmerging contaminants and, among them, pharmaceutical compounds, have a significant impact on water ecosystems. Layered Double Hydroxides (LDH), being easy to synthesize and cheap materials, have recently gained attention as adsorbents in aqueous solutions. This work describes the latest research performed in the adsorption capacity of LDH towards both antibiotics and Non-Steroidal Anti-Inflammatory Drugs (NSAID) describing and analyzing the synthesis conditions (Me2+:Me3+ molar ratio, calcination temperature, choice of metals for the memory effect), kinetics and isotherm models used, use of support (more practical in a 3D over a 2D form), temperature effect and several techniques for the recovery of the adsorbents. LDH exhibited great performance and potential as clean adsorbents for these emerging contaminants.Publication Open Access Progress and perspectives for the use of pillared clays as adsorbents for organic compounds in aqueous solution(De Gruyter, 2022-09-14) Cardona Rodríguez, Yaneth; Vicente, Miguel Ángel; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2The world is faced with several problems as regards water pollution. This is due to several factors, including the discharge of effluents into the environment with no prior treatment. This wastewater, therefore, contains significant levels of pollutants, including numerous toxic organic contaminants and others that are similarly undesirable. Several studies have attempted to find ways of removing wastewater contaminants using pillared interlayered clays (PILC) as adsorbents. In this work, we present a summary of those studies that have used PILC as adsorbents for the removal of organic compounds from aqueous solutions while simultaneously illustrating their potential for this purpose. A general overview is provided so that the reader can acquire a basic understanding of the PILC and their modified counterparts that have been used, and some of the characteristics that can directly affect their adsorption behavior, especially their textural and surface properties.