Cervera Gabalda, Laura María

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Cervera Gabalda

First Name

Laura María

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Tailoring the structural and magnetic properties of Co-Zn nanosized ferrites for hyperthermia applications
    (Elsevier, 2018) Gómez Polo, Cristina; Recarte Callado, Vicente; Cervera Gabalda, Laura María; Beato López, Juan Jesús; López García, Javier; Rodríguez Velamazán, José Alberto; Ugarte Martínez, María Dolores; Mendonça, E. C.; Duque, J. G. S.; Zientziak; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Estadística, Informática y Matemáticas; Gobierno de Navarra / Nafarroako Gobernua
    A comparative study of the magnetic properties (magnetic moment, magnetocrystalline anisotropy) and hyperthermia response in Co-Zn spinel nanoparticles is presented. The CoxZn1-xFe2O4 nanoparticles (x = 1, 0.5, 0.4, 0.3, 0.2 and 0.1) were synthesized by co-precipitated method and the morphology and mean crystallite size (around 10 nm) of the nanoparticles were analysed by TEM Microscopy. Regarding the magnetic characterization (SQUID magnetometry), Co-Zn nanoparticles display at room temperature anhysteretic magnetization curves, characteristic of the superparamagnetic behavior. A decrease in the blocking temperature, T-B, with Zn content is experimentally detected that can be ascribed to the reduction in the mean nanoparticle size as x decreases. Furthermore, the reduction in the magnetocrystalline anisotropy with Zn inclusion is confirmed through the analysis of TB versus the mean volume of the nanoparticles and the law of approach to saturation. Maximum magnetization is achieved for x = 0.5 as a result of the cation distribution between octahedral and tetrahedral spinel sites, analysed by neutron diffraction studies. The occurrence of a canted spin arrangement (Yafet-Kittel angle) is introduced to properly fit the magnetic spinel structures. Finally, the heating capacity of these spinel ferrites is analyzed under ac magnetic field (magnetic hyperthermia). Maximum SAR (Specific Absorption Rate) values are achieved for x = 0.5 that should be correlated to the maximum magnetic moment of this composition.
  • PublicationOpen Access
    Antibacterial performance of Co-Zn ferrite nanoparticles under visible light irradiation
    (Wiley, 2024-11-20) Gubieda, Alicia G.; Abad Díaz de Cerio, Ana; García-Prieto, Ana; Fernández-Gubieda, María Luisa; Cervera Gabalda, Laura María; Ordoqui Huesa, Eduardo; Cornejo Ibergallartu, Alfonso; Gómez Polo, Cristina; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    BACKGROUND: To address water scarcity and promote sustainable resource management, more efficient and cost-effective water treatment solutions are necessary. Particularly, pathogens in drinking water are a topic of growing concern. One promising technology is the use of photocatalytic nanoparticles activated by visible light as antibacterial agents. This study focuses on the characterization and antibacterial properties of Co-Zn ferrite nanocatalysts, tested against Escherichia coli. RESULTS: The CoxZn1¿xFe2O4 (x = 0, 0.1, 0.4 and 0.6) ferrites were synthesized by the co-precipitation method. Structural, morphological and optical analyses confirmed that these nanoparticles have a cubic spinel structure, with sizes of around 10 nm, and band gap energies suitable for visible light activation (1.4¿1.7 eV). The antibacterial efficacy of the nanoparticles against E. coli was tested and compared with their photocatalytic performance employing phenol as organic pollutant model (highest phenol degradation for x = 0.6). Specifically, the antibacterial capacity of these nanoparticles was evaluated by comparing the ability of bacteria to grow after being incubated with the nanoparticles under visible light and in the dark. It was found that nanoparticles with lower cobalt content (x = 0 and 0.1) significantly reduced bacterial culturability under visible light. Transmission Electron Microscopy analysis revealed that nanoparticles with cobalt content caused bacteria to secrete biofilm, potentially offering some protection against the nanoparticles. CONCLUSION: ZnFe2O4 nanoparticles show the highest antibacterial effect amongst those tested. This is attributed to the combined action of Zn2+ ion release and the photocatalytic effect under visible light. Furthermore, Zn might inhibit protective biofilm secretion, leading to higher antibacterial effects.