Person:
Sorolla Ayza, Mario

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Sorolla Ayza

First Name

Mario

person.page.departamento

Ingeniería Eléctrica y Electrónica

ORCID

person.page.upna

484

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Experimental demonstration of a millimeter-wave metallic ENZ lens based on the energy squeezing principle
    (IEEE, 2015) Torres Landívar, Víctor; Orazbayev, Bakhtiyar; Pacheco-Peña, Víctor; Teniente Vallinas, Jorge; Beruete Díaz, Miguel; Navarro Cía, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The performance of an epsilon-near zero (ENZ) plano-concave lens is experimentally demonstrated and verified at the D-band of the millimeter-waves. The lens is comprised of an array of narrow metallic waveguides near cut-off frequency, which effectively behaves as an epsilon-near-zero medium at 144 GHz. A good matching with free space is achieved by exploiting the phenomenon of energy squeezing and a clear focus with a transmission enhancement of 15.9 dB is measured. The lens shows good radiation properties with a directivity of 17.6 dBi and low cross-polar components of -34 dB. All results are supported by numerical simulations.
  • PublicationOpen Access
    A slow light fishnet-like absorber in the millimeter-wave range
    (EMW Publishing, 2011) Navarro Cía, Miguel; Torres Landívar, Víctor; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A novel route to achieve a narrowband free-space electromagnetic absorber in any range of the spectrum based on stacked subwavelength hole arrays is proposed. The absorption is obtained by means of a slow light mode inside a fishnet-like engineered structure and exploiting the unavoidable misalignments and bucklings of the free-standing stack. An incoming pulse becomes permanently trapped in the structure due to the near zero group velocity which causes an enhancement of the radiation-structure interaction that leads to a huge increment of losses arising from the finite conductivity of the metal as well as arrangement tolerances. This approach is studied not only by simulation but also experimentally under normal incidence at millimeter wavelengths. Moreover, a basic grasp about the angular dependence of the structure is given by analyzing the 2D dispersion diagram. It shows that this scheme may also display high absorption under oblique incidence for s-polarization (or TE-polarization), whereas p-polarization (TM-polarization) would degrade its performance.
  • PublicationOpen Access
    Lensing system and Fourier transformation using epsilon-near-zero metamaterials
    (American Physical Society, 2012) Navarro Cía, Miguel; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Engheta, Nader; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Metamaterials and metastructures with effective relative permittivity near zero exhibit unusual wave properties such as uniform phase distributions across such domains. Here we discuss the possibility of using ε-near-zero (ENZ) metamaterials for lensing and Fourier transforming. Owing to the possibility of having ENZ metamaterials in different wavelength regimes, the concepts shown here can be utilized at any frequency bands in which such materials can be constructed.