Magaña Lizarrondo, Eduardo

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Magaña Lizarrondo

First Name

Eduardo

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Instrumentation for measuring users' goodputs in dense Wi-Fi deployments and capacity-planning rules
    (Springer Nature, 2020-01-11) García-Dorado, José Luis; Ramos, Javier; Gómez-Arribas, Francisco J.; Magaña Lizarrondo, Eduardo; Aracil Rico, Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza
    Before a dense Wi-Fi network is deployed, Wi-Fi providers must be careful with the performance promises they made in their way to win a bidding process. After such deployment takes place, Wi-Fi-network owners-such as public institutions-must verify that the QoS agreements are being fulfilled. We have merged both needs into a low-cost measurement system, a report of measurements at diverse scenarios and a performance prediction tool. The measurement system allows measuring the actual goodput that a set of users are receiving, and it has been used in a number of schools on a national scale. From this experience, we report measurements for different scenarios and diverse factors-which may result of interest to practitioners by themselves. Finally, we translate all the learned lessons to a freely-available capacity-planning tool for forecasting performance given a set of input parameters such as frequency, signal strength and number of users-and so, useful for estimating the cost of future deployments.
  • PublicationOpen Access
    NATRA: Network ACK-Based Traffic Reduction Algorithm
    (IEEE, 2020) García-Jiménez, Santiago; Magaña Lizarrondo, Eduardo; Aracil Rico, Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Traffic monitoring involves packet capturing and processing at a very high rate of packets per second. Typically, flow records are generated from the packet traffic, such as TCP flow records that feature the number of bytes and packets in each direction, flow duration, number of different ports, and other metrics. Delivering such flow records, about network traffic flowing at tens of Gbps is rather challenging in terms of processing power. To address this problem, traffic thinning can be applied to reduce the input load, by swiftly discarding useless packets at the sniffer NIC or driver level, which effectively reduces the load on software layers that handle traffic processing. This work proposes an algorithm that drops empty ACK packets from TCP traffic, thus achieving a significant reduction in the packets per second that must be handled by each traffic module. The tests discussed below show that the algorithm achieves a 25% decrease in the packets per second rate with minimal information loss.