Lizasoain Iriso, María Inmaculada

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Lizasoain Iriso

First Name

María Inmaculada

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Orness measurements for lattice m-dimensional interval-valued OWA operators
    (Elsevier, 2018) Miguel Turullols, Laura de; Paternain Dallo, Daniel; Lizasoain Iriso, María Inmaculada; Ochoa Lezaun, Gustavo; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    Ordered weighted average (OWA) operators are commonly used to aggregate information in multiple situations, such as decision making problems or image processing tasks. The great variety of weights that can be chosen to determinate an OWA operator provides a broad family of aggegating functions, which obviously give diferent results in the aggregation of the same set of data. In this paper, some possible classifications of OWA operators are suggested when they are de ned on m-dimensional intervals taking values on a complete lattice satisfying certain local conditions. A first classification is obtained by means of a quantitative orness measure that gives the proximity of each OWA to the OR operator. In the case in which the lattice is finite, another classification is obtained by means of a qualitative orness measure. In the present paper, several theoretical results are obtained in order to perform this qualitative value for each OWA operator.
  • PublicationOpen Access
    Orness for idempotent aggregation functions
    (MDPI, 2017) Legarreta, Leire; Lizasoain Iriso, María Inmaculada; Mardones Pérez, Iraide; Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Matemáticas
    Aggregation functions are mathematical operators that merge given data in order to obtain a global value that preserves the information given by the data as much as possible. In most practical applications, this value is expected to be between the infimum and the supremum of the given data, which is guaranteed only when the aggregation functions are idempotent. Ordered weighted averaging (OWA) operators are particular cases of this kind of function, with the particularity that the obtained global value depends on neither the source nor the expert that provides each datum, but only on the set of values. They have been classified by means of the orness—a measurement of the proximity of an OWA operator to the OR-operator. In this paper, the concept of orness is extended to the framework of idempotent aggregation functions defined both on the real unit interval and on a complete lattice with a local finiteness condition.