Ros Ganuza, Javier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Ros Ganuza

First Name

Javier

person.page.departamento

Ingeniería

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    On the convergence of a modal updating iterative method applied to a vibrating table for food transportation
    (2007) Iriarte Goñi, Xabier; Ros Ganuza, Javier; Mekanika, Energetika eta Materialen Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería Mecánica, Energética y de Materiales
    This work focuses on the updating of the parameters of a Vibrating Table Multibody model. Modal Analysis has been done to obtain the experimental Modal Parameters of the System (natural frequencies (ωi), damping ratios (ξi) and mode shapes (φi)), and the unknown Dynamic Model Parameters (p) are found through a Newton-Raphson based procedure that fits the Modal Parameters of the dynamic model to those obtained from the Modal Analysis experiment.
  • PublicationOpen Access
    Optimal strain-gauge placement for mechanical load estimation in circular cross-section shafts
    (Elsevier, 2021) Iriarte Goñi, Xabier; Aginaga García, Jokin; Gainza González, Gorka; Ros Ganuza, Javier; Bacaicoa Díaz, Julen; Institute of Smart Cities - ISC
    The customary electrical circuit configuration for estimating mechanical loads with strain gauges uses Wheatstone full- or half-bridges. For each mechanical load to be estimated, a dedicated bridge with two or four gauges has to be mounted, placing the strain gauges in specific configurations along the measured part. In this paper the strain of individual gauges is measured by means of quarter-bridges and all the mechanical loads exerted on a shaft are estimated jointly as different linear combinations of the strains of the gauges. The location of the gauges on the shaft are determined optimally and the influence of apparent strain related to temperature variations is avoided. Results show several configurations of reduced sets of gauges capable of optimally estimating the six components of the mechanical loads exerted on a circular cross-section shaft. The validation of the approach in a dedicated rig has shown the complexity of its experimental implementation.