Person:
Rodríguez Rabadan, José Luis

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Rodríguez Rabadan

First Name

José Luis

person.page.departamento

Ciencias humanas y de la educación

person.page.instituteName

ORCID

person.page.upna

811749

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Inertial response and inertia emulation in DFIG and PMSG wind turbines: emulating inertia from a supercapacitor-based energy storage system
    (IEEE, 2021) Sacristán Sillero, Javier; Goñi, Naiara; Berrueta Irigoyen, Alberto; López Taberna, Jesús; Rodríguez Rabadan, José Luis; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The increasing wind power penetration in electrical power systems results in a reduction of operative conventional power plants. These plants include synchronous generators directly connected to the grid. Facing a change in grid frequency, these generators inherently respond by varying their stored kinetic energy and their output power, which contributes to grid stability. Such a response is known as inertial response. Wind turbines (WTs) are mostly based on Doubly-Fed Induction Generator (DFIG) or Permanent Magnet Synchronous Generator (PMSG) machines. Their power electronics interface decouples the electromechanical behaviour of the generator from the power grid, making their inertial response null or insignificant. Therefore, in order not to weaken the frequency response of the power system, WTs must be able to react to frequency variations by changing their output power, i.e., emulating an inertial response. Common techniques for inertia emulation in WTs rely on pitch control and stored kinetic energy variation. This contribution proposes a strategy (applicable for both DFIG and PMSG) which uses the energy stored in a supercapacitor connected to the back-to-back converter DC link to emulate the inertial response. Its performance is compared by simulation with aforementioned common techniques, showing ability to remove certain limitations.
  • PublicationOpen Access
    New design alternatives for a hybrid photovoltaic and doubly-fed induction wind plant to augment grid penetration of renewable energy
    (IEEE, 2021) Goñi, Naiara; Sacristán Sillero, Javier; Berrueta Irigoyen, Alberto; Rodríguez Rabadan, José Luis; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Reducing carbon emissions is essential to stop climate change. The grid-share of renewable generation plants is increasing, being wind and photovoltaic plants the most common ones, whereas conventional plants are the only ones that provide the necessary services to maintain the grid stability and keep the generation-demand balance. However, with the aim of achieving carbon-neutral generation, conventional plants are being dismantled. This leads to the imminent need of providing these services with renewable plants. Due to this challenge, this proposal analyses a hybrid plant composed by wind and photovoltaic generation with two types of storage, lithium-ion batteries and a thermal storage system based on volcanic stones. In order to compare both strategies, a technoeconomic methodology is explained that allows to optimally size the plant, using the current prices of each technology. The most cost-competitive proposal turns to be the hybrid plant with thermal storage, composed by 623.9 MW installed power and 21.9 GWh of storage, which could replace a 100 MW, 24/7 conventional power plant, with an LCOHS (levelized cost of hybrid system) of 118.38 €/MWh, providing identical grid services and an equivalent inertia in a way committed with the environment. This is in turn a zero-carbon emissions solution perfectly matched to a second life plan for a conventional power plant.