(IEEE, 2019) Biurrun Quel, Carlos; Lacombe, Elsa; Gianesello, Frederic; Luxe, Cyril; Río Bocio, Carlos del; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
The 200 and 320 GHz frequency band constitutes an interesting window with approximately constant attenuation, which could potentially have applications in the area of ultrahigh-capacity wireless links. The user's demand of data for future 5G mobile systems will require backhaul systems to be able to provide several dozens of GHz in order to satisfy those demands. Furthermore, additive manufacturing techniques stand as an interesting way of reducing costs without sacrificing performance. In this work, a choke horn antenna, designed at a central frequency of 240 GHz and manufactured by 3D-printing technology is presented. This antenna is thought to serve as the feed of a compact parabolic reflector. The antenna has been measured by Near- and Far-Field techniques and these measurements show an adequate agreement with simulation results. Additionally, the measurement set-up included a novel dynamic time-domain, software-controlled gating that readjusts itself for every measured point.