Lecumberri Villamediana, Pablo

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Lecumberri Villamediana

First Name

Pablo

person.page.departamento

Matemática e Informática

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 6 of 6
  • PublicationOpen Access
    Asymmetric white matter degeneration in amyotrophic lateral sclerosis: a diffusion kurtosis imaging study of motor and extra-motor pathways
    (Frontiers Media, 2025-04-25) Quizhpilema Cedeño, Juan Carlos; Legarda, Ane; Hidalgo, José Manuel ; Lecumberri Villamediana, Pablo; Jericó Pascual, Ivonne; Cabada Giadás, María Teresa; Ciencias de la Salud; Osasun Zientziak; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Gobierno de Navarra / Nafarroako Gobernua
    Background: Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease that lacks effective early biomarkers. This study investigated the potential of diffusion kurtosis imaging (DKI) as a non-invasive biomarker for detecting and monitoring ALS progression through a comprehensive analysis of white matter alterations. Methods: We performed a cross-sectional analysis of magnetic resonance images with advanced diffusion imaging techniques in ALS patients recruited from a neurodegenerative consultation service over a 3-year period and healthy controls. Our methodology employed multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD) for tract reconstruction and diffusion kurtosis imaging for microstructural analysis. The study focused particularly on the corticospinal tract and associated pathways, utilizing both tract-specific Bundle Analytics (BUAN) and whole-brain Tract-Based Spatial Statistics (TBSS) approaches. Results: The study included 33 ALS patients and 37 controls with no significant differences in age or gender. ALS patients predominantly presented with spinal onset and exhibited moderate functional impairment (ALSFRS-R: 39.09 ± 5). Whole-brain TBSS revealed widespread white matter alterations, with increased MD, RD, and AD, and decreased FA notably in the corona radiata, internal capsule, and corticospinal tracts. Detailed fiber tracking of the corticospinal tracts showed significant microstructural changes, with the left CST displaying pronounced increases in MD and AD alongside reduced FA, while the right CST exhibited distinctive regional variations. Additionally, analyses of the frontopontine and parietopontine tracts uncovered further alterations in diffusion metrics. Despite imaging findings, clinical-radiological correlations with functional scores and disease progression were not statistically significant. Conclusions: This study explores DKI as a potential biomarker for ALS pathology, revealing microstructural changes in both motor and extra-motor pathways. Using whole-brain TBSS analysis and tractography with DIPY, we identified an asymmetric pattern of degeneration and involvement of integrative neural networks, providing new insights into ALS pathophysiology. These findings contribute to our understanding of the complex structural alterations in ALS and suggest that DKI-derived metrics may have utility in characterizing the disease process.
  • PublicationOpen Access
    Agreement between an inertial measurement unit (IMU) algorithm and a photoelectric system for analysing spatiotemporal variables during overground and treadmill running
    (Taylor & Francis, 2025-05-21) Miqueleiz Erburu, Unai; Aguado Jiménez, Roberto; Lecumberri Villamediana, Pablo; Gorostiaga Ayestarán, Esteban; Ciencias de la Salud; Osasun Zientziak
    The aim of this study was to assess the agreement between running stride variables measured simultaneously with an inertial sensor (MTw IMU) using a specific algorithm, and a floor-based photoelectric (Optojump; OJ) system among well-trained endurance runners, during overground and treadmill runs at speeds ranging from 9 to 21 km∙h-1. Five different filter settings (from 0_0 to 4_4) were used with the OJ to detect the contact event, based on the number of LEDs (from 1 to 5). No significant differences (p > 0.05) were found between the two devices in any of the stride variables when the 4_4 filter was implemented using the OJ. The agreement was good for contact time (CT) and flight time (FT) [r = 0.81–0.93; Typical error of the estimate (TEE%) = 3.2–7.5%], whereas for stride frequency (SF), stride length (SL) and stride time (ST) the agreement was almost perfect (r = 0.91–0.99; TEE% = 0.2–1.7%). The agreement worsened as the number of activated LEDs used to detect the contact event decreased. This suggests that the tested inertial sensor using a specific algorithm can achieve highly precise measurement of spatiotemporal parameters during both overground and treadmill running, compared to the OJ (4_4) system.
  • PublicationOpen Access
    Motor abnormalities and cognitive impairment in first-episode psychosis patients, their unaffected siblings and healthy controls
    (Elsevier, 2018) Cuesta, Manuel J.; Moreno-Izco, Lucía; Ribeiro Fernández, María; López-Ilundain, José M.; Lecumberri Villamediana, Pablo; Cabada Giadás, María Teresa; Lorente Omeñaca, Ruth; Sánchez Torres, Ana María; Gómez Fernández, Marisol; Peralta Martín, Víctor; Ciencias de la Salud; Osasun Zientziak; Matemáticas; Matematika
    Motor abnormalities (MAs) may be already evidenced long before the beginning of illness and are highly prevalent in psychosis. However, the extent to which the whole range of MAs are related to cognitive impairment in psychosis remains understudied. This study aimed to examine comparatively the relationships between the whole range of motor abnormalities and cognitive impairments in the first-episode of psychosis (FEP), their unaffected siblings and healthy control subjects. Fifty FEP patients, 21 of their healthy siblings and 24 age- and sex matched healthy controls were included. Motor assessment included catatonic, extrapyramidal and neurological soft signs (NSS) by means of standardized instruments. An exhaustive neuropsychological battery was also performed to extract the 7 cognitive dimensions of MATRICS initiative. Higher scores on NSS but not on extrapyramidal and catatonic signs showed significant associations with worse cognitive performance in the three study groups. However, the pattern of associations regarding specific cognitive functions was different among the three groups. Moreover, extrapyramidal signs showed significant associations with cognitive impairment only in FEP patients but not in their unaffected siblings and healthy controls. Catatonic signs did not show any significant association with cognitive functioning in the three study groups. These findings add evidence to the associations between motor abnormalities, particularly NSS and extrapyramidal signs, and cognitive impairment in first-episode psychosis patients. In addition, our results suggest that the specific pattern of associations between MAs and cognitive functioning is different in FEP patients from those of the unaffected siblings and healthy subjects.
  • PublicationOpen Access
    Sprint mechanics evaluation using inertial sensor-based technology: a laboratory validation study
    (Wiley, 2018) Setuain Chourraut, Igor; Lecumberri Villamediana, Pablo; Ahtiainen, J. P.; Mero, A. A.; Izquierdo Redín, Mikel; Ciencias de la Salud; Osasun Zientziak
    Advances in micro‐electromechanical systems have turned magnetic inertial measurement units (MIMUs) into a suitable tool for vertical jumping biomechanical evaluation. Thus, this study aimed to determine whether appropriate reliability and agreement reports could also be obtained when analyzing 20‐m sprint mechanics. Four bouts of 20‐m sprints were evaluated to determine whether the data provided by a MIMU placed at the lumbar spine could reliably assess sprint mechanics and to examine the validity of the MIMU sensor compared to force plate recordings. Maximal power (P0), force (F0), and velocity (V0), as well as other mechanical determinants of sprint performance associated with the force‐velocity, power‐velocity, and ratio of forces‐velocity, such as applied horizontal force loss (Sfv) and decrease in ratio of forces (Drf), were calculated and compared between instrumentations. Extremely large‐to‐very large correlation levels between MIMU sensor‐based sprint mechanics variables and force plate recordings were obtained (mean±SD, force plate vs MIMU; V0, 8.61±0.85 vs 8.42±0.69; F0, 383±110 vs 391±103; P0, 873±246 vs 799±241; Sfv, −44.6±12.7 vs −46.2±10.7), ranging from 0.88 to 0.94, except for Drf, which showed weak‐to‐moderate correlation level (r=.45; −6.32±1.08 vs −5.76±0.68). Step‐averaged force values measured with both systems were highly correlated (r=.88), with a regression slope close to the identity (1.01). Bland and Altman graphical representation showed a no random distribution of measured force values. Finally, very large‐to‐extremely large retest correlation coefficients were found for the intertrial reliability of MIMU measurements of sprint performance variables (r value ranging from .72 to .96). Therefore, MIMUs showed appropriate validity and reliability values for 20‐m sprint performance variables.
  • PublicationOpen Access
    Consistency of sex-based differences between treadmill and overground running using an inertial measurement unit (IMU)
    (Elsevier, 2024-06-19) Miqueleiz Erburu, Unai; Aguado Jiménez, Roberto; Lecumberri Villamediana, Pablo; Gorostiaga Ayestarán, Esteban; Ciencias de la Salud; Osasun Zientziak; Universidad Publica de Navarra / Nafarroako Unibertsitate Publikoa
    Differences in running gait between treadmill and overground running has been subject of study, while consistency of group differences between running surfaces has not been previously analysed. This study examined both the differences between running surfaces and the consistency of sex-based differences between surfaces in some spatiotemporal and kinematic variables measured by an inertial measurement unit fastened over the lumbar spine. Thirty-two (sixteen females) endurance runners firstly performed overground and then treadmill (1 % inclination) runs at speeds between 9-21 km.h-1. Males showed lower flight time (FT) [moderate effect size (ES)] during treadmill running compared to overground, while females showed greater stride frequency (SF) (moderate ES), lower stride length (SL) (moderate ES), FT (moderate ES), and vertical (VT) trunk displacement (moderate ES), as well as greater medio-lateral (ML) trunk displacement (moderate ES). No differences in CT between surfaces were found (trivial to small). Furthermore, all the sex-differences were consistent between treadmill and overground running: Males showed lower SF (large and moderate ES, respectively), greater SL (large and moderate ES) and CT (moderate and large ES), lower FT (large ES), greater VT displacement (moderate to large ES), and lower ML displacement (moderate ES) than females. These results may be of interest to carefully transfer the running gait analyses between surfaces depending on sex.
  • PublicationOpen Access
    Reliability of Xsens inertial measurement unit in measuring trunk accelerations: a sex-based differences study during incremental treadmill running
    (Frontiers Media, 2024) Miqueleiz Erburu, Unai; Aguado Jiménez, Roberto; Lecumberri Villamediana, Pablo; García-Tabar, Ibai; Gorostiaga Ayestarán, Esteban; Ciencias de la Salud; Osasun Zientziak
    Introduction: Inertial measurement units (IMUs) are utilized to measure trunk acceleration variables related to both running performances and rehabilitation purposes. This study examined both the reliability and sex-based differences of these variables during an incremental treadmill running test. Methods: Eighteen endurance runners performed a test–retest on different days, and 30 runners (15 females) were recruited to analyze sex-based differences. Mediolateral (ML) and vertical (VT) trunk displacement and root mean square (RMS) accelerations were analyzed at 9, 15, and 21 km·h−1. Results: No significant differences were found between test-retests [effect size (ES)<0.50)]. Higher intraclass correlation coefficients (ICCs) were found in the trunk displacement (0.85-0.96) compared to the RMS-based variables (0.71–0.94). Male runners showed greater VT displacement (ES = 0.90–1.0), while female runners displayed greater ML displacement, RMS ML and anteroposterior (AP), and resultant euclidean scalar (RES) (ES = 0.83–1.9). Discussion: The IMU was found reliable for the analysis of the studied trunk acceleration-based variables. This is the first study that reports different results concerning acceleration (RMS) and trunk displacement variables for a same axis in the analysis of sex-based differences.