Person:
Lecumberri Villamediana, Pablo

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Lecumberri Villamediana

First Name

Pablo

person.page.departamento

Matemática e Informática

ORCID

person.page.upna

7736

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Assessment of asymmetric leg loading before and after total hip arthroplasty using instrumented shoes
    (BioMed Central, 2014) Martínez Ramírez, Alicia; Weenk, Dirk; Lecumberri Villamediana, Pablo; Verdonschot, Nico; Pakvis, Dean; Veltink, Peter H.; Matemáticas; Matematika
    Background: Total hip arthroplasty is a successful surgical treatment in patients with osteoarthritis of the hip. Different questionnaires are used by the clinicians to assess functional capacity and the patient's pain, despite these questionnaires are known to be subjective. Furthermore, many studies agree that kinematic and kinetic parameters are crucial to evaluate and to provide useful information about the patient’s evolution for clinicians and rehabilitation specialists. However, these quantities can currently only be obtained in a fully equipped gait laboratory. Instrumented shoes can quantify gait velocity, kinetic, kinematic and symmetry parameters. The aim of this study was to investigate whether the instrumented shoes is a sufficiently sensitive instrument to show differences in mobility performance before and after total hip arthroplasty. Methods: In this study, patients undergoing total hip arthroplasty were measured before and 6–8 months after total hip arthroplasty. Both measurement sessions include 2 functional mobility tasks while the subject was wearing instrumented shoes. Before each measurement the Harris Hip Score and the Traditional Western Ontario and McMaster Universities osteoarthritis index were administered as well. Results: The stance time and the average vertical ground reaction force measured with the instrumented shoes during walking, and their symmetry index, showed significant differences before and after total hip arthroplasty. However, the data obtained with the sit to stand test did not reveal this improvement after surgery. Conclusions: Our results show that inter-limb asymmetry during a walking activity can be evaluated with the instrumented shoes before and after total hip arthroplasty in an outpatient clinical setting.
  • PublicationOpen Access
    Pre-operative ambulatory measurement of asymmetric lower limb loading during walking in total hip arthroplasty patients
    (BioMed Central, 2013) Martínez Ramírez, Alicia; Weenk, Dirk; Lecumberri Villamediana, Pablo; Verdonschot, Nico; Pakvis, Dean; Veltink, Peter H.; Matemáticas; Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Background: Total hip arthroplasty is a successful surgical procedure to treat hip osteoarthritis. Clinicians use different questionnaires to assess the patient’s pain and functional capacity. Furthermore, they assess the quality of gait in a very global way. This clinical evaluation usually shows significant improvement after total hip arthroplasty, however, does not provide objective, quantifiable information about the movement patterns underlying the functional capacity, which can currently only be obtained in a gait laboratory. Instrumented force shoes can quantify gait velocity, ground reaction forces and the gait pattern easily in an outpatient setting. The main goal of this study was to investigate how mobility characteristics during walking, relate to gait velocity and questionnaire outcomes of patients with hip osteoarthritis in an outpatient setting. Methods: 22 patients with primary osteoarthritis of the hip selected for a total hip arthroplasty participated in this study. For each patient the Harris Hip Score, the Traditional Western Ontario and the McMaster Universities osteoarthritis index were administered. Subsequently, the patients were instructed to walk through the corridor while wearing instrumented shoes. The gait velocity estimated with the instrumented force shoes was validated measuring the time required to walk a distance of 10 m using a stopwatch and a measuring tape as a reference system. A regression analysis between spatial, temporal, ground reaction force parameters, including asymmetry, and the gait velocity and the questionnaires outcomes was performed. Results: The velocity estimated with the instrumented shoes did not differ significantly from the velocity measured independently. Although gait parameters correlated significantly with velocity, symmetry index parameters were not correlated with velocity. These symmetry index parameters show significant inter-limb asymmetry during walking. No correlation was found between any of the variables studied and questionnaires outcomes. Conclusion: Inter-limb asymmetry can be evaluated with the instrumented shoes supplying important additional information about the individual gait pattern, which is not represented by gait velocity and questionnaires usually used. Therefore, this new ambulatory measurement system is able to provide complementary information to gait velocity and questionnaires outcomes to assess the functional capacity of patients with hip osteoarthritis.