Person:
Induráin Eraso, Esteban

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Induráin Eraso

First Name

Esteban

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

ORCID

0000-0002-1511-5658

person.page.upna

17

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Semicontinuous planar total preorders on non-separable metric spaces
    (The Korean Mathematical Society, 2009) Campión Arrastia, María Jesús; Candeal, Juan Carlos; Induráin Eraso, Esteban; Matemáticas; Matematika
    We prove that every non-separable connected metric space can be endowed with a total preorder that is order-isomorphic to a nonrepresentable subset of the lexicographic plane and semicontinuous with respect to the metric topology.
  • PublicationOpen Access
    Pointwise aggregation of maps: its structural functional equation and some applications to social choice theory
    (Elsevier, 2017) Miguel Turullols, Laura de; Campión Arrastia, María Jesús; Candeal, Juan Carlos; Induráin Eraso, Esteban; Paternain Dallo, Daniel; Automática y Computación; Matemáticas; Automatika eta Konputazioa; Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We study a structural functional equation that is directly related to the pointwise aggregation of a finite number of maps from a given nonempty set into another. First we establish links between pointwise aggregation and invariance properties. Then, paying attention to the particular case of aggregation operators of a finite number of real-valued functions, we characterize several special kinds of aggregation operators as strictly monotone modifications of projections. As a case study, we introduce a first approach of type-2fuzzy sets via fusion operators. We develop some applications and possible uses related to the analysis of properties of social evaluation functionals in social choice, showing that those functionals can actually be described by using methods that derive from this setting.