Person: Induráin Eraso, Esteban
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Induráin Eraso
First Name
Esteban
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
0000-0002-1511-5658
person.page.upna
17
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Decomposition of fuzzy relations: an application to the definition, construction and analysis of fuzzy preferences(MDPI, 2023) Campión Arrastia, María Jesús; Induráin Eraso, Esteban; Raventós Pujol, Armajac; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Institute for Advanced Research in Business and Economics - INARBEIn this article, we go deeper into the study of some types of decompositions defined by triangular norms and conorms. We work in the spirit of the classical Arrovian models in the fuzzy setting and their possible extensions. This allows us to achieve characterizations of existence and uniqueness for such decompositions. We provide rules to obtain them under some specific conditions. We conclude by applying the results achieved to the study of fuzzy preferences.Publication Embargo Scores of hesitant fuzzy elements revisited: "Was sind und was sollen"(Elsevier, 2023) Alcantud, José Carlos R.; Campión Arrastia, María Jesús; Induráin Eraso, Esteban; Munárriz Iriarte, Ana; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Institute for Advanced Research in Business and Economics - INARBEThis paper revolves around the notion of score for hesitant fuzzy elements, the constituent parts of hesitant fuzzy sets. Scores allow us to reduce the level of uncertainty of hesitant fuzzy sets to classical fuzzy sets, or to rank alternatives characterized by hesitant fuzzy information. We propose a rigorous and normative definition capable of encapsulating the characteristics of the most important scores introduced in the literature. We systematically analyse different types of scores, with a focus on coherence properties based on cardinality and monotonicity. The hesitant fuzzy elements considered in this analysis are unrestricted. The inspection of the infinite case is especially novel. In particular, special attention will be paid to the analysis of hesitant fuzzy elements that are intervals.