Morán Juez, José Fernando
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Morán Juez
First Name
José Fernando
person.page.departamento
Ciencias
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access A self-induction method to produce high quantities of recombinant functional flavo-leghemoglobin reductase(Elsevier, 2008-01-29) Urarte Rodríguez, Estíbaliz; Auzmendi, Iñigo; Rol, Selene; Ariz Arnedo, Idoia; Aparicio Tejo, Pedro María; Arredondo-Peter, Raúl; Morán Juez, José Fernando; Institute for Multidisciplinary Research in Applied Biology - IMAB; Gobierno de Navarra / Nafarroako GobernuaFerric leghemoglobin reductase (FLbR) is able to reduce ferric leghemoglobin (Lb3+) to ferrous (Lb2+) form. This reaction makes Lb functional in performing its role since only reduced hemoglobins bind O2. FLbR contains FAD as prosthetic group to perform its activity. FLbR-1 and FLbR-2 were isolated from soybean root nodules and it has been postulated that they reduce Lb3+. The existence of Lb2+ is essential for the nitrogen fixation process that occurs in legume nodules; thus, the isolation of FLbR for the study of this enzyme in the nodule physiology is of interest. However, previous methods for the production of recombinant FLbR are inefficient as yields are too low. We describe the production of a recombinant FLbR-2 from Escherichia coli BL21(DE3) by using an overexpression method based on the self-induction of the recombinant E. coli. This expression system is four times more efficient than the previous overexpression method. The quality of recombinant FLbR-2 (based on spectroscopy, SDS-PAGE, IEF, and native PAGE) is comparable to that of the previous expression system. Also, FLbR-2 is purified near to homogeneity in only few steps (in a time scale, the full process takes 3 days). The purification method involves affinity chromatography using a Ni-nitrilotriacetic acid column. Resulting rFLbR-2 showed an intense yellow color, and spectral characterization of rFLbR-2 indicated that rFLbR-2 contains flavin. Pure rFLbR-2 was incubated with soybean Lba and NADH, and time drive rates showed that rFLbR-2 efficiently reduces Lb3+.Publication Open Access Expression and localization of a Rhizobium-derived cambialistic superoxide dismutase in pea (Pisum sativum) nodules subjected to oxidative stress(The American Phytopathological Society, 2011-09-07) Asensio, Aarón C.; Marino Bilbao, Daniel; James, Euan K.; Ariz Arnedo, Idoia; Arrese-Igor Sánchez, César; Aparicio Tejo, Pedro María; Arredondo-Peter, Raúl; Morán Juez, José Fernando; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Ciencias del Medio Natural; Natura Ingurunearen ZientziakTwo phylogenetically unrelated superoxide dismutase (SOD) families, i.e., CuZnSOD (copper and zinc SOD) and FeMn-CamSOD (iron, manganese, or cambialistic SOD), eliminate superoxide radicals in different locations within the plant cell. CuZnSOD are located within the cytosol and plastids, while the second family of SOD, which are considered to be of bacterial origin, are usually located within organelles, such as mitochondria. We have used the reactive oxygen species¿producer methylviologen (MV) to study SOD isozymes in the indeterminate nodules on pea (Pisum sativum). MV caused severe effects on nodule physiology and structure and also resulted in an increase in SOD activity. Purification and N-terminal analysis identified CamSOD from the Rhizobium leguminosarum endosymbiont as one of the most active SOD in response to the oxidative stress. Fractionation of cell extracts and immunogold labeling confirmed that the CamSOD was present in both the bacteroids and the cytosol (including the nuclei, plastids, and mitochondria) of the N-fixing cells, and also within the uninfected cortical and interstitial cells. These findings, together with previous reports of the occurrence of FeSOD in determinate nodules, indicate that FeMnCamSOD have specific functions in legumes, some of which may be related to signaling between plant and bacterial symbionts, but the occurrence of one or more particular isozymes depends upon the nodule type.Publication Open Access Soybean dihydrolipoamide dehydrogenase (ferric leghemoglobin reductase 2) interacts with and reduces ferric rice non-symbiotic hemoglobin 1(Simplex Academic Publishers, 2013) Gopalasubramaniama, Sabarinathan K.; Kondapallib, Kalyan C.; Millán-Pacheco, César; Pastor, Nina; Stemmler, Timothy L.; Morán Juez, José Fernando; Arredondo-Peter, Raúl; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Gobierno de Navarra / Nafarroako GobernuaFerrous oxygenated hemoglobins (Hb2+O2) autoxidize to ferric Hb3+, but Hb3+ is reduced to Hb2+ by enzymatic and non-enzymatic mechanisms. We characterized the interaction between the soybean ferric leghemoglobin reductase 2 (FLbR2) and ferric rice non-symbiotic Hb1 (Hb13+). Spectroscopic analysis showed that FLbR2 reduces Hb13+. Analysis by tryptophan fluorescence quenching showed that FLbR2 interacts with Hb13+, however the use of ITC and IEF techniques revealed that this interaction is weak. In silico modeling showed that predicted FLbR2 and native Hb13+ interact at the FAD-binding domain of FLbR2 and the CD-loop and helix F of Hb13+.Publication Open Access Rice (Oryza) hemoglobins [version 2; peer review: 2 approved](F1000 Research, 2014) Arredondo-Peter, Raúl; Morán Juez, José Fernando; Sarath, Gautam; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaHemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O , whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O . Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O -transport, O -sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs.