Muñoz Labiano, Delia

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Muñoz Labiano

First Name

Delia

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 1 of 1
  • PublicationOpen Access
    Improved photocatalytic and antibacterial performance of Cr doped TiO2 nanoparticles
    (Elsevier, 2021) Gómez Polo, Cristina; Larumbe Abuin, Silvia; Gil Bravo, Antonio; Muñoz Labiano, Delia; Rodríguez Fernández, L.; Fernández Barquín, Luis; García-Prieto, Ana; Fernández-Gubieda, María Luisa; Muela, Alicia; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    The effect of Cr and N doping in the adsorption capacity, photocatalytic properties and antibacterial response of TiO2 anatase nanoparticles is analyzed. The nanoparticles (N-TiO2, Cr-TiO2 and Cr/N-TiO2) were prepared by the sol-gel method. The structural (X-ray diffraction and TEM) and magnetic (SQUID magnetometry) characterization confirms the nanosized nature of the anatase nanoparticles and the absence of secondary phases. The enhancement of the adsorption capacity of the dye (methyl orange) on the surface of the catalysts for the Cr and Cr/N doped samples, together with the redshift of the UV-Vis absorbance spectra promote a high photocatalytic performance under visible light in these nanocatalysts. The culturability and viability of the Escherichia coli DH5α in a medium supplemented with the nanoparticles was characterized and compared with the evolution under visible light (both without and with nanoparticles). The results show that Cr-TiO2 nanoparticles under visible light display antibacterial activity that cannot be accounted by the toxicity of the nanoparticles alone. However the antibacterial effect is not observed in N-TiO2 and Cr/N-TiO2. The differences in the electrostatic charge (isoelectric point) and the degree of nanoparticle dispersion are invoked as the main origins of the different antibacterial response in the Cr-TiO2 nanoparticles.