Fuentes González, Ramón
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Fuentes González
First Name
Ramón
person.page.departamento
Automática y Computación
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Generation of fuzzy mathematical morphologies(Universitat Politècnica de Catalunya, 2001) Burillo López, Pedro; Frago Paños, Noé Natalio; Fuentes González, Ramón; Automática y Computación; Automatika eta KonputazioaFuzzy Mathematical Morphology aims to extend the binary morphological operators to grey-level images. In order to define the basic morphological operations fuzzy erosion, dilation, opening and closing, we introduce a general method based upon fuzzy implication and inclusion grade operators, including as particular case, other ones existing in related literature In the definition of fuzzy erosion and dilation we use several fuzzy implications (Annexe A, Table of fuzzy implications), the paper includes a study on their practical effects on digital image processing. We also present some graphic examples of erosion and dilation with three different structuring elements B(i,j)=1, B(i,j)=0.7, B(i,j)=0.4, i,j∈{1,2,3} and various fuzzy implications.Publication Open Access Fuzzy morphological operators in image processing(Universitat Politècnica de Catalunya, 2003) Burillo López, Pedro; Frago Paños, Noé Natalio; Fuentes González, Ramón; Automática y Computación; Automatika eta KonputazioaFirst of all, in this paper we propose a family of fuzzy implication operators, which the generalised Luckasiewicz´s one, and to analyse the impacts of Smets and Magrez properties on these operators. The result of this approach will be a characterisation of a proposed family of inclusion grade operators (in Bandler and Kohout´s manner) that satisfies the axioms of Divyendu and Dogherty. Second, we propose a method to define fuzzy morphological operators (erosions and dilations). A family of fuzzy implication operators and the inclusion grade are the basis for this method.