Fuentes González, Ramón

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Fuentes González

First Name

Ramón

person.page.departamento

Automática y Computación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Generation of fuzzy mathematical morphologies
    (Universitat Politècnica de Catalunya, 2001) Burillo López, Pedro; Frago Paños, Noé Natalio; Fuentes González, Ramón; Automática y Computación; Automatika eta Konputazioa
    Fuzzy Mathematical Morphology aims to extend the binary morphological operators to grey-level images. In order to define the basic morphological operations fuzzy erosion, dilation, opening and closing, we introduce a general method based upon fuzzy implication and inclusion grade operators, including as particular case, other ones existing in related literature In the definition of fuzzy erosion and dilation we use several fuzzy implications (Annexe A, Table of fuzzy implications), the paper includes a study on their practical effects on digital image processing. We also present some graphic examples of erosion and dilation with three different structuring elements B(i,j)=1, B(i,j)=0.7, B(i,j)=0.4, i,j∈{1,2,3} and various fuzzy implications.
  • PublicationOpen Access
    Fuzzy morphological operators in image processing
    (Universitat Politècnica de Catalunya, 2003) Burillo López, Pedro; Frago Paños, Noé Natalio; Fuentes González, Ramón; Automática y Computación; Automatika eta Konputazioa
    First of all, in this paper we propose a family of fuzzy implication operators, which the generalised Luckasiewicz´s one, and to analyse the impacts of Smets and Magrez properties on these operators. The result of this approach will be a characterisation of a proposed family of inclusion grade operators (in Bandler and Kohout´s manner) that satisfies the axioms of Divyendu and Dogherty. Second, we propose a method to define fuzzy morphological operators (erosions and dilations). A family of fuzzy implication operators and the inclusion grade are the basis for this method.