Rivero Fuente, Pedro J.

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Rivero Fuente

First Name

Pedro J.

person.page.departamento

Ingeniería

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    An alternative methodology for the evaluation of photocatalytic activity of polymeric coatings by monitoring dye degradation
    (MDPI, 2022) Sandúa Fernández, Xabier; Rivero Fuente, Pedro J.; Esparza Gorráiz, Joseba; Rodríguez Trías, Rafael; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2
    This work provides an alternative method for evaluating the photodegradation behaviour of different types of dyes such as Methylene Blue, Rhodamine B, Congo Red, Metanil Yellow, and Malachite Green. In this methodology, the coating is dyed with the chosen colorant and two beams of light are combined and channelled to a spot on the dyed coating through an optical fibre, the first one from an ultraviolet (UV) source (which is the responsible of activating photocatalysis) and the second one from a Visible light source, which is employed to monitor changes in colour along the time. The photocatalytic coating selected for testing this methodology consists of a mat of electrospun poly (acrylic acid) (PAA) fibres that acts as base film, furtherly coated by using layer-by-layer (LbL) assembly technique for the immobilization of two different photocatalytic metal oxide precursors (TiO2 and Fe2O3) nanoparticles. The morphological characterization of the samples has been implemented by means of scanning electron microscopy (SEM), confocal microscopy, and water contact angle measurements in order to analyse the resultant thickness, roughness, electrospun fibre diameter, and wettability. The experimental results clearly demonstrate the validity of the methodology to measure the photocatalytic activity in all dyed coatings, although significant differences have been observed depending on the selected dye.
  • PublicationOpen Access
    Design of photocatalytic functional coatings based on the immobilization of metal oxide particles by the combination of electrospinning and layer-by-layer deposition techniques
    (MDPI, 2022) Sandúa Fernández, Xabier; Rivero Fuente, Pedro J.; Esparza Gorráiz, Joseba; Conde, Ana; Rodríguez Trías, Rafael; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Gobierno de Navarra / Nafarroako Gobernua
    This work reports the design and characterization of functional photocatalytic coatings based on the combination of two different deposition techniques. In a first step, a poly(acrylic acid) + β-Cyclodextrin (denoted as PAA+ β-CD) electrospun fiber mat was deposited by using the electrospinning technique followed by a thermal treatment in order to provide an enhancement in the resultant adhesion and mechanical resistance. In a second step, a layer-by-layer (LbL) assembly process was performed in order to immobilize the metal oxide particles onto the previously electrospun fiber mat. In this context, titanium dioxide (TiO2 ) was used as the main photocatalytic element, acting as the cationic element in the multilayer LbL structure. In addition, two different metal oxides, such as tungsten oxide (WO3 ) and iron oxide (Fe2O3 ), were added into PAA anionic polyelectrolyte solution with the objective of optimizing the photocatalytic efficiency of the coating. All of the coatings were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) images, showing an increase in the original fiber diameter and a decrease in roughness of the mats because of the LbL second step. The variation in the wettability properties from a superhydrophilic surface to a less wettable surface as a function of the incorporation of the metal oxides was also observed by means of water contact angle (WCA) measurements. With the aim of analyzing the photocatalytic efficiency of the samples, degradation of methyl blue (MB) azo-dye was studied, showing an almost complete discoloration of the dye in the irradiated area. This study reports a novel combination method of two deposition techniques in order to obtain a functional, homogeneous and efficient photocatalytic coating.
  • PublicationOpen Access
    Evaluation of the photocatalytic activity and anticorrosion performance of electrospun fibers doped with metallic oxides
    (MDPI, 2021) Albistur, Ainhoa; Rivero Fuente, Pedro J.; Esparza Gorráiz, Joseba; Rodríguez Trías, Rafael; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    This paper reports the development and characterization of a multifunctional coating that combines anticorrosion and photocatalytic properties, deposited by means of the electrospinning technique. In the first step, a functional electrospun fiber mat composed of poly(acrylic acid) (PAA) and β-cyclodextrin (β-CD) was obtained, showing high water insolubility and great adhesion increased by means of a thermal crosslinking process (denoted as PAA + β-CD). In the second step, the fibers were doped with particles of titanium dioxide (denoted as PAA + β-CD/TiO2) and titanium dioxide plus iron oxide (denoted as PAA + β-CD/TiO2/Fe2O3). The morphology and fiber diameter of the electrospun mats were evaluated by using confocal microscopy, whereas the presence of the metal oxides in the electrospun fibers was corroborated by scanning electron microscopy (SEM) and X-ray fluorescence (XRF), respectively. In addition, electrochemical tests in saline solution revealed that the sample composed of PAA + β-CD/TiO2/Fe2O3 showed the highest corrosion protection efficiency of all the samples, which was directly associated to lower corrosion current density and higher corrosion potential. Furthermore, the paper reports a novel approach to in situ determination of methylene blue (MB) degradation onto the coating. The results revealed complete degradation of MB, which is perfectly appreciated by total discoloration of the film in the irradiated zone (from bluish to a white spot). The main conclusions of this research are the efficiency of the electrospun system PAA + β-CD/TiO2/Fe2O3 for developing photocatalytic activity and corrosion protection and the utility of the dry MB discoloration tests to evaluate photocatalytic activity.
  • PublicationOpen Access
    A comparative study in the design of TIO2 assisted photocatalytic coatings monitored by controlling hydrophilic behavior and rhodamine b degradation
    (MDPI, 2023) Sandúa Fernández, Xabier; Rivero Fuente, Pedro J.; Conde, Ana; Esparza Gorráiz, Joseba; Rodríguez Trías, Rafael; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2
    This work presents a comparative study related to the photocatalytic efficiency associated with wettability measurements and organic dye degradation, as well as other relevant properties (i.e., corrosion resistance, roughness, wettability, and adhesion to a substrate). The photocatalytic precursors are titanium dioxide nanoparticles (TiO2 NPs) which are dispersed onto a polymeric electrospun fiber matrix by using three different deposition techniques such as electrospraying, spraying, and dip-coating, respectively. In this work, the host electrospun matrix is composed of poly(acrylic acid) fibers crosslinked with cyclodextrin (β-CD), which shows a good chemical affinity and stability with the other deposition techniques which are responsible for incorporating the TiO2 NPs. In order to evaluate the efficacy of each coating, the resultant photocatalytic activity has been monitored by two different tests. Firstly, the reduction in the water contact angle is appreciated, and secondly, the degradation of an organic dye (Rhodamine B) is observed under UV irradiation. In addition, the final roughness, adherence, and pitting corrosion potential have also been controlled in order to determine which solution provides the best combination of properties. Finally, the experimental results clearly indicate that the presence of TiO2 NPs deposited by the three techniques is enough to induce a super hydrophilic behavior after UV irradiation. However, there are notable differences in photocatalytic efficiency on the Rhodamine B as a function of the selected deposition technique.