Gil Bravo, Antonio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Gil Bravo
First Name
Antonio
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access Optimizing the removal of nitrate by adsorption onto activated carbon using response surface methodology based on the central composite design(Taylor & Francis, 2020) Taoufik, Nawal; Elmchaouri, Abdellah; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; CienciasThis study sheds light on the adsorption process for the removal of nitrate ions from synthetic aqueous solutions. This contaminant pose a potential risk to the environment and can cause health effects including cancers and methemoglobinemia in infants. When the adsorption process is carried out, the effect by the several operating parameters such as initial nitrate concentration, pH, mass of activated carbon, and contact time becomes apparent. The essential process variables are optimized using response surface methodology (RSM) based on the central composite design (CCD) experiments. For this purpose 31 experimental results are required to determine the optimum conditions. The optimum conditions for the removal of nitrates is found to be: initial nitrate concentration = 15 mg/L; initial pH 4.0; mass of activated carbon = 25 mg, and contact time = 70 min. At these optimized conditions, the maximum removal of nitrates is found to be 96.59%.Publication Open Access Adsorption recovery of Ag(I) and Au(III) from an electronics industry wastewater on a clay mineral composite(University of Science and Technology Beijing, 2019) Rakhila, Youness; Elmchaouri, Abdellah; Mestari, Allal; Korili, Sophia A.; Abouri, Meriem; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; CienciasThe aim of this work is to investigate the ability of an adsorbent of a clay mineral composite to remove and recover gold and silver ions from wastewater. The composite was prepared by mixing phosphogypsum (PG), obtained from an industrial waste, and a natural clay mineral. The materials were characterized before and after use in adsorption by several techniques. Batch adsorption experiments were carried out, and the effects of the contact time and the pH and temperature of solution on the removal processes were investigated. The optimum pH for the adsorption was found to be 4. The adsorption of these metal ions reached equilibrium after 2 h of contact. The pseudo-first- and the pseudo-second-order kinetic models, as well as the Freundlich and the Langmuir isotherm equations, were considered to describe the adsorption results. The maximum adsorbed amount of 85 mg·g−1 Ag(I) and 108.3 mg·g−1 Au(III) was found. The recovery of the adsorbed gold and silver ions from the adsorbent was also analyzed. Strong acids appeared to be the best desorption agents to recover gold and silver ions. The use of aqua regia gave regeneration rates close to 95.3% and 94.3% for Ag(I) and Au(III), respectively. Finally, the removal of gold and silver ions from an industrial wastewater was tested in batch experiments, and percentage recoveries of 76.5% and 79.9% for Ag(I) and Au(III), respectively, were obtained. To carry out the industrial application of the proposed methodology, an economic viability study is required.Publication Open Access Optimization of the pentachlorophenol adsorption by organo-clays based on response surface methodology(MDPI, 2022) El Mahmoudi, Soufiane; Elmchaouri, Abdellah; El Kaimech, Assya; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; CienciasThe aim of this study is to optimize the adsorption of pentachlorophenol (PCP) using an organo-clay under the response surface methodology. The adsorbent was selected from a montmorillonite exchanged by various cations, such as Fe3+, Al3+, Zn2+, Mg2+, Na+ , and modified by bromide cetyltrimethylammonium (CTAB) as surfactant. The obtained organo-montmorillonite was characterized using several techniques, such as Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and nitrogen adsorption, performed at −196 ◦C. The results showed an increase in basal space from 1.65 to 1.88 nm and a decrease in the specific surface and pore volume, with an increase in pore diameter, including the presence of characteristic bands of -CH2 - and -CH3 - groups at 2926 and 2854 cm−1 in the FTIR spectrum after the modification. The optimization of PCP removal by clay adsorbents is achieved using the response surface methodology (RSM) with a four-factor central composite model, including pH of solution, mass of adsorbent, contact time, and initial concentration. The results proved the validity of the regression model, wherein the adsorption capacity reaches its maximum value of 38 mg/g at a lower adsorbent mass of 20 mg, pH of 6, contact time (tc) of 5 h, and initial concentration of 8 mg/L.Publication Embargo Improvement of the adsorption properties of an activated carbon coated by titanium dioxide for the removal of emerging contaminants(Elsevier, 2019) Taoufik, Nawal; Elmchaouri, Abdellah; Anouar, Fatna; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; CienciasThree activated carbon coated titanium dioxide composites are evaluated as adsorbents for the removal of three pharmaceutical compounds: clofibric, gallic and salicylic acids from aqueous solutions. These composite materials are characterized by several techniques as SEM, FT-IR, TGA and point of zero charge determination. The adsorption mechanism of acids was investigated and compared to the adsorption on the virgin carbon. The analysis of adsorption isotherms and kinetic properties reveals that the addition of TiO2 increased the adsorption capacities of the initial material. The adsorption kinetics has been studied in terms of pseudo-first and pseudo-second order kinetic models, and the Freundlich, Langmuir, Temkin, Tôth and Sips isotherms models have also been applied to the equilibrium adsorption data. The analysis of results indicated that the adsorption of acids on the activated carbon-titanium dioxide composites is well described by the pseudo-first order kinetic model and the Sips isotherm equation fitted the sorption experimental results better than other models.