Gil Bravo, Antonio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Gil Bravo
First Name
Antonio
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
56 results
Search Results
Now showing 1 - 10 of 56
Publication Open Access Use of clays and pillared clays in the catalytic photodegradation of organic compounds in aqueous solutions(Taylor & Francis, 2024-02-23) Cardona Rodríguez, Yaneth; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; ZientziakConventional wastewater treatment plants do not currently remove all organic compounds, including some emerging pollutants. This has prompted several efforts to develop new methods and materials —or to improve existing ones— to remove such pollutants. The technologies studied to remove contaminants from water include photochemical processes in which the photons activate a material to produce radicals, which go on to initiate a series of reactions that result in oxidation of the pollutant. Several photocatalysts and catalyst supports have been used; these include clays and pillared interlayered clays (PILC), which have shown interesting results in the photodegradation of several organic contaminants. In this review, we describe the studies that have used both clays and PILC for the photodegradation of organic compounds in aqueous solutions. The results reported are summarized and compared, thus confirming that the findings support the use of these systems as photocatalysts and that they are successful and promising materials for the removal of several organic compounds. In this aspect, new synthesis procedures for PILC materials can be proposed from Heterostructures and MOF based on clays.Publication Open Access Recent progress in the application of Ni-based catalysts for the dry reforming of methane(Taylor & Francis, 2021) Torrez Herrera, Jonathan Josué; Korili, Sophia A.; Gil Bravo, Antonio; Institute for Advanced Materials and Mathematics - INAMAT2Ni-based catalysts are highly efficient in methane-reforming processes. In the particular case of methane reforming in the presence of carbon dioxide, or dry reforming of methane (DRM), it is necessary to modify and control the initial properties of the catalyst to confer on it resistance to carbon deposition in particular, and to sintering of the Ni metal particles. In this regard, catalytic supports and promoters of different natures have been proposed. Likewise, the addition of small amounts of noble metals to avoid oxidation of the Ni active phase during the reforming reaction has been proposed. Catalyst preparation methods have also been identified as being of particular interest, since they can affect the structure of the Ni metal particles. In this review, the thermodynamic and kinetic aspects of the dry reforming of methane reaction are presented first. The most recent developments in synthetic methods (impregnation, sol-gel, co-precipitation, equilibrium deposition filtration, atomic layer deposition, non-thermal glow discharge plasma, multi-bubble sonoluminescence, 'core-shell' structure) aimed at maximizing the dispersion and thermal resistance of Ni particles are then discussed and compared. The catalytic supports used to promote dispersion of the active metallic phase, the oxygen-storage capacity, and the metal/support interaction are also described. The review then addresses the fact that both the nature of the support and the addition of promoters and other metallic phases that modify the surface properties can control the interaction between the metal and the support, the electronic density of the active phase, and the degree of Ni reduction. Finally, new lines of research focused on the DRM process to make the reaction conditions milder and favor the process at low temperatures are also summarized. © 2021 Taylor & Francis.Publication Open Access Facile synthesis of an Ni/LaAlO3 - perovskite via an MOF gel precursor for the dry reforming of methane(Elsevier, 2024) Muñoz Alvear, Helir Joseph; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2A simple strategy to prepare the pure perovskite phase of lanthanum aluminate (LaAlO3) by calcination of a highly porous, dry MOF precursor gel has been developed. This study demonstrates that the structural and textural properties, such as specific surface area, pore volumes and pore sizes, of precursor-like metal-organic gels (MOG) (MOG-Al-La) based on metal-organic framework (MOF) structures can be modulated by optimizing the solvothermal treatment time. The perovskite obtained after solvothermal treatment at 120º C for 12 h and calcination at 750º C maintained the mesoporous characteristics of the MOF precursor, with a small particle size due to the decrease in crystallization temperature. These properties in the support allowed a good dispersion of the active Ni sites, low reducibility, and a strong interaction between them and the support, thus suppressing sintering under the severe catalytic reaction conditions evaluated (GHSV = 120,000 cm3/g-h) for the dry reforming of methane. The resulting MOX-(12 h)-LaAlO3-750-Ni catalyst gave a CH4 average conversion of 75% and CO2 average conversion of 80% after 20 h of reaction. The improved stability of the catalyst was attributed to suppression of the formation of the dense network of carbon filaments that can stress and subsequently fracture the support, cause attrition of the catalyst granules and hinder diffusion of the reactants both through the pores of the support and the interparticle spaces.Publication Open Access Metal-Al layered double hydroxides synthesized from aluminum slags as efficient CO2 adsorbents at pre- and post-combustion temperature(Elsevier, 2023) Santamaría Arana, Leticia; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaLayered double hydroxides (LDH) have been proposed as the materials that offer the best performance in the moderate-temperature range, between 200 and 450 °C, for CO2 adsorption, so the effect of some synthesis parameters and surface modification on their adsorption capacities is herein investigated. This work reports the use of M2+ (Co, Mg, Ni and Zn)/Al layered double hydroxides synthesized with a 3:1 molar ratio by the co-precipitation method and using aluminum extracted from saline slags as source of this metal as CO2 adsorbents. The synthesis and use of Zn/TiAl is also reported considering several proportions of Al-Ti. Structural characterization and comparison of the series has been achieved using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), nitrogen physisorption at single bond196 °C and thermogravimetry measurements (TGA). The performance of calcined LDH as CO2 adsorbents was evaluated in the 50 – 400 °C temperature range and 80 kPa and results show that Ni6Al2 and Mg6Al2 samples present a significant adsorption capacity at low temperature (0.382 and 0.292 mmolCO2/g, respectively). At 400 °C only Mg6Al2 maintains its high adsorption capacity (0.275 mmolCO2/g) compared to the other calcined LDH. Its adsorption capacity at moderate-temperature range was proven to be better than that of a commercial Mg6Al2 sample. In all materials the CO2 adsorption capacity at 200–450 °C increased by incorporating potassium (K2CO3 and KOH as sources) up to 0.58 mmolCO2/g for Mg6Al2 +K2CO3. The addition of the amine TEPA in the low-temperature range worked for Co6Al2 and Mg6Al2 (increment > 40 %). In the case of Zn6Al2, the partial substitution of Al by Ti also increased the CO2 adsorption capacity from 0.177 to 0.244 mmolCO2/g, finding isosteric heats between 17.07 and 23.30 kJ/mol using the Clausius-Clapeyron equation.Publication Open Access Synthesis of high-surface-area C3N4 deposited on halloysite-derived silica nanotubes: enhanced visible light degradation of norfloxacin(Elsevier, 2024) Santamaría Arana, Leticia; Korili, Sophia A.; Gil Bravo, Antonio; López de Luzuriaga Fernández, José Manuel; Monge Oroz, Miguel; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2Silica nanotubes, obtained from halloysite clay nanotubes that were calcined and acid-activated, were used as support for graphitic carbon nitride (g-C3N4) via a simple deposition method. They were chosen in order to avoid any agglomeration issues, as there was an increase of the specific surface area with respect to pristine halloysite. The composite was tested for the degradation of a persistent emerging pollutant in water, namely, antibiotic norfloxacin. Experiments were performed in darkness (until adsorption-desorption equilibrium was attained) and, subsequently under visible light. Comparison of the performance between the photocatalysts shows that the composite was 49% faster than g-C3N4. The introduction of persulfate in the lumen of the nanotubes via vacuum negative-pressure suction and injection was also tested for the generation of .OH radicals that fasten the degradation rate, obtaining a further 47% increase in the degradation rate of norfloxacin thanks to the release of this anion during the photodegradation process. The degradation mechanism of SiO2/g-C3N4 sample was studied with trapping experiments by the use of scavengers that were introduced to quench the photodegradation: triethanolamine for photoexcited holes (h+), tert-butanol for hydroxyl radicals (.OH) and a N2 atmosphere for superoxide radicals (.O2.).Publication Open Access A comparative study of the catalytic performance of nickel supported on a hibonite-type La-hexaaluminate synthesized from aluminum saline slags in the dry reforming of methane(Elsevier, 2022) Torrez Herrera, Jonathan Josué; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work, a hibonite-type Ni/La-hexaaluminate (Ni/LHA) synthesized from an industrial waste is used and compared as catalyst in the dry reforming of methane (DRM) at 973 K. The structure, catalytic behavior, and stability during a run time of at least 50 h of three Nicatalysts obtained from two commercial supports and two preparation methods were used for comparison. An aluminum solution (9.40 g/L) obtained from an aluminum saline slag waste by acid extraction was used to synthesize the hexaaluminate by mixing with a stoichiometric amount of lanthanum nitrate and methanol/Peg400/PegMn400 under hydrothermal conditions at 493 K for 16 h. The Ni/LHA catalyst (10 wt% NiO) was obtained by impregnation of the synthesized support, calcined previously at 1473 K for 2 h. The resulting solids were characterized by several techniques as: X-ray diffraction (XRD), N2 adsorption at 77 K, temperature-programmed reduction (TPR), scanning electron microscopy (SEM) and transmission electron microscopy (HR-TEM). In order to compare the catalytic behavior and properties of the Ni/LHA catalyst, three Ni catalysts obtained from two commercial supports (g-Al2O3 and SiO2) and two preparation methods (wet impregnation (I) and precipitation-deposition (PD)) were synthesized. Analysis of the TPR patterns for the catalysts allowed the type of metal support interaction and NiO species to be determined, with a weak interaction with the support being observed in Ni/LHA and NieI/ SiO2. The NiO species observed, with crystallite sizes between 9.7 and 40.4 nm, confirm the X-ray structural analyses. The Ni/LHA catalyst was found to be active and very stable in the DRM reaction after 50 h. The catalytic behavior was evaluated from the CO2 and CH4 conversions, as well as the H2/CO selectivity, with values of 99% over almost all the time range evaluated. The behavior of this catalyst is comparable to that of NieI/Al2O3 and NiPD/SiO2. The results found indicating that the strong interaction of nickel with the support favors the stability of the catalysts in the DRM reaction.Publication Open Access Synthesis strategies of alumina from aluminum saline slags(Elsevier, 2023) Grande López, Lucía; Vicente, Miguel Ángel; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaAluminum saline slags is a waste of the metallurgical industry that presents serious environmental problems since it needs very extensive areas for its disposal, the toxicity it causes in the atmosphere and groundwater, in addition to high transportation costs. The valorization of this residue by the synthesis of alumina, a compound widely used in the chemical industry, generates a high impact and great interest. In this work, the strategies for synthesizing alumina from aluminum saline slags are reviewed in a context of growing demand for this metal and environmental crisis. The first sections present the aluminum production processes, both from natural bauxite (primary process) and from the recycling of materials with a high aluminum content (secondary process); paying attention to the waste generated and what environmental problems they produce. The main investigations that have allowed to address the recovery of the waste generated are described below, focusing on the processes of recovery/extraction of the aluminum present in its composition. The aluminum in these residues can be found as a metal or forming other compounds such as simple or mixed oxides. Chemical processes are the most relevant, especially those that deal with the acid and alkaline extraction of the metal. The most important section of the work reports on the methods of synthesis of Al2O3, highlighting the methods of precipitation, sol-gel, hydrothermal synthesis, and combustion, among others. The work ends with a summary and conclusions section.Publication Open Access Effect of the surface properties of Me2+/Al layered double hydroxides synthesized from aluminum saline slag wastes on the adsorption removal of drugs(Elsevier, 2020) Santamaría Arana, Leticia; Devred, F.; Gaigneaux, E. M.; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua, PI017-PI039 CORRALThis work presents the synthesis of Me2+ (Co, Mg, Ni and Zn)/Al layered double hydroxides (LDH) with a 3:1 M ratio by the co-precipitation method. Structural characterization and comparison of the series has been achieved using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), nitrogen physisorption at 77 K, thermogravimetry measurements (TGA), temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), ammonia temperature-programmed desorption (NH3-TPD) and point of zero charge (pHpzc). Batch experiments were performed to analyze the adsorption capacity of the different LDH on diclofenac and salicylic acid, as example of emergent pollutants. The pH, mass of adsorbent, contact time and concentration of pollutant were the parameters used to compare the adsorption performance of the synthesized materials. Samples showed different behavior and the equilibrium was reached at different times, Mg6Al2 and Zn6Al2 showed lower equilibrium times but had higher adsorption capacity. Various adsorption and isotherm equation models were employed to study both the kinetic and equilibrium results and, in general, the removal of diclofenac was greater than that of salicylic acid. 1-Butanol conversion was also used as a means of acidity and basicity characterization and the results were compared with the adsorption performance of the samples in order to explain the results found. A relationship between the amount of pollutants adsorbed and the butenes formed in the dehydrogenation reaction of 1-butanol was found.Publication Open Access Photocatalytic degradation of trimethoprim on doped Ti-pillared montmorillonite(Elsevier, 2019) González, Beatriz; Trujillano, Raquel; Vicente, Miguel Ángel; Rives, Vicente; Korili, Sophia A.; Gil Bravo, Antonio; Institute for Advanced Materials and Mathematics - INAMAT2Montmorillonite pillared with titanium and doped with Cr3+ or Fe3+ has been tested for the photo-degradation of the antibiotic trimethoprim (trimethoxybenzyl-2,4-pyrimidinediamine) under different conditions, namely, in the dark or in UV light, with or without catalyst, finding excellent catalytic performance under photocatalytic conditions. The degradation by-products were preliminary analysed by mass spectrometry. The results suggested that the molecule broke in two halves, corresponding to its two existing rings. The process continued with the breakage of new fragments from the trimethoxybenzene half, these fragments later reacted with the methoxy groups in this part of the molecule, giving species with m/z values higher than that for the starting molecule, and with the breakage of new fragments.Publication Open Access Bimetallic (Pt-Ni) La-hexaaluminate catalysts obtained from aluminum saline slags for the dry reforming of methane(Elsevier, 2021) Torrez Herrera, Jonathan Josué; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis work describes the synthesis of platinum-nickel/lanthanum hexaaluminates (PtNi/LHA) and their performance in terms of stability and catalytic activity in the dry reforming of methane (DRM) at 973 K. An Al solution (9.40 g/L) obtained from an Al saline slag waste by acid extraction was used to synthesize the hexaaluminate by mixing with a stoichiometric amount of lanthanum nitrate and methanol/Peg400/PegMn400 under hydrothermal conditions at 493 K for 16 h. After calcination at 1473 K for 2 h, the presence of LHA was confirmed. Wet impregnation of the synthesized support was used to obtain an initial Ni/LHA catalyst (10 wt% NiO) and the modified PtNi/LHA catalysts (0.2–1 wt% Pt). The support and catalysts were characterized by X-ray diffraction (XRD), N2 adsorption at 77 K, temperature- programmed reduction (TPR), scanning electron microscopy (SEM) and transmission electron microscopy (HR- TEM). The analysis of the TPR patterns for the catalysts allowed the type of metal support interaction and NiO species to be determined, with a weak interaction with the support being observed in all cases. The presence of Pt promoted NiO reducibility. The PtNi/LHA catalysts synthesized were found to be active and very stable in the DRM reaction after reaction for 50 h. The catalytic behavior was evaluated from the CO2 and CH4 conversions, as well as the H2/CO selectivity, with values of between 89% and 92% in almost all the time range evaluated. The presence of Pt improved the stability and catalytic performance of Ni/LHA thus improving resistance to coke formation.