Gil Bravo, Antonio

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Gil Bravo

First Name

Antonio

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 1 of 1
  • PublicationOpen Access
    Titania-triethanolamine-kaolinite nanocomposites as adsorbents and photocatalysts of herbicides
    (Elsevier, 2021) Ferreira, Ana Vera de Toledo Piza Figueiredo; Barbosa, Lorrana Vietro; Souza, Suelen Delfino de; Ciuffi, Katia J.; Vicente, Miguel Ángel; Trujillano, Raquel; Korili, Sophia A.; Gil Bravo, Antonio; Faria, Emerson H. de; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    Kaolinite-titania adsorbents/photocatalysts were prepared by functionalizing a kaolinite with titanium(IV) triethanolaminate isopropoxide by the sol–gel route. These materials were characterized by various techniques and applied in adsorption studies (kinetic and equilibrium) of the herbicides diuron, hexazinone, and tebuthiuron. Photodegradation studies were also conducted with the materials submitted to heat-treatment at 400, 700, or 1000 °C. The basal spacing increased from 0.71 to 1.08 nm when pure kaolinite was functionalized with titanium triethanolaminate units. The materials displayed FTIR bands of –CH, –NH2, and Ti–OH groups, thereby confirming that titanium alkoxide was present in the kaolinite interlayer space. The pseudo second-order model was the best for describing the kinetic adsorption process. In the equilibrium study, the Langmuir model best described the adsorption mechanism. The photodegradation studies showed that the kaolinite-titania nanocomposites heat-treated at 400 and 700 degraded diuron, hexazinone, and tebuthiuron efficiently due to the presence of metakaolin and formation of the anatase phase. © 2021 Elsevier B.V.