Gil Bravo, Antonio

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Gil Bravo

First Name

Antonio

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 29
  • PublicationOpen Access
    Microwave-assisted pillaring of a montmorillonite with al-polycations in concentrated media
    (MDPI, 2017) González, Beatriz; Pérez, Alba Helena; Trujillano, Raquel; Gil Bravo, Antonio; Vicente, Miguel Ángel; Química Aplicada; Kimika Aplikatua
    A montmorillonite has been intercalated with Al3+ polycations, using concentrated solutions and clay mineral dispersions. The reaction has been assisted by microwave radiation, yielding new intercalated solids and leading to Al-pillared solids after their calcination at 500 °C. The solids were characterized by elemental chemical analysis, X-ray diffraction, FTIR spectroscopy, thermal analyses, and nitrogen adsorption. The evolution of the properties of the materials was discussed as a function of the preparation conditions. Microwave treatment for 2.5 min provided correctly pillared solids.
  • PublicationOpen Access
    Hydrocalumite-TiO2 hybrid systems synthesized from aluminum salt cake for photodegradation of ibuprofen
    (Elsevier, 2024) Rebollo, Beatriz; Jiménez, Alejandro; Trujillano, Raquel; Rives, Vicente; Gil Bravo, Antonio; Vicente, Miguel Ángel; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    Synthesis of hydrocalumite–TiO2 hybrid systems and their use in photodegradation of ibuprofen is reported for the first time. Hydrocalumite was prepared with Al3+ recovered from an aluminum slag (circular economy), TiO2 was deposited on hydrocalumite by hydrolysis of titanium(IV) isopropoxide, and the solids thus obtained were calcined at 400 and 750 ºC. The solid calcined at 400 ºC was essentially amorphous, showing the presence of calcite due to the fixation of atmospheric CO2, while the solid calcined at 750 ºC was composed of mayenite, perovskite and rutile. The calcined solids were used for catalytic degradation of ibuprofen (50 ppm in aqueous solutions) under UV irradiation, obtaining better results than when using commercial TiO2–P25 from Degussa. Under the specific conditions used, the degradation took place in the initial steps of the process, mainly giving rise to species with higher molecular mass than initial ibuprofen.
  • PublicationOpen Access
    Progress in the removal of pharmaceutical compounds from aqueous solution using layered double hydroxides as adsorbents: a review
    (Elsevier, 2020) Santamaría Aquilué, Rafael; Vicente, Miguel Ángel; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Emerging contaminants and, among them, pharmaceutical compounds, have a significant impact on water ecosystems. Layered Double Hydroxides (LDH), being easy to synthesize and cheap materials, have recently gained attention as adsorbents in aqueous solutions. This work describes the latest research performed in the adsorption capacity of LDH towards both antibiotics and Non-Steroidal Anti-Inflammatory Drugs (NSAID) describing and analyzing the synthesis conditions (Me2+:Me3+ molar ratio, calcination temperature, choice of metals for the memory effect), kinetics and isotherm models used, use of support (more practical in a 3D over a 2D form), temperature effect and several techniques for the recovery of the adsorbents. LDH exhibited great performance and potential as clean adsorbents for these emerging contaminants.
  • PublicationOpen Access
    Progress and perspectives for the use of pillared clays as adsorbents for organic compounds in aqueous solution
    (De Gruyter, 2022-09-14) Cardona Rodríguez, Yaneth; Vicente, Miguel Ángel; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    The world is faced with several problems as regards water pollution. This is due to several factors, including the discharge of effluents into the environment with no prior treatment. This wastewater, therefore, contains significant levels of pollutants, including numerous toxic organic contaminants and others that are similarly undesirable. Several studies have attempted to find ways of removing wastewater contaminants using pillared interlayered clays (PILC) as adsorbents. In this work, we present a summary of those studies that have used PILC as adsorbents for the removal of organic compounds from aqueous solutions while simultaneously illustrating their potential for this purpose. A general overview is provided so that the reader can acquire a basic understanding of the PILC and their modified counterparts that have been used, and some of the characteristics that can directly affect their adsorption behavior, especially their textural and surface properties.
  • PublicationOpen Access
    Multifunctional nanocomposites based on kaolinite/titania/iron applied to hydrogen peroxide production and bisphenol-A removal
    (Elsevier, 2024-11-06) Do Prado, Marcus Vinicius; Lima, Vinicius; Oliveira, Larissa; Nassar, Eduardo José; Marçal, Liziane; Faria, Emerson H. de; Vicente, Miguel Ángel; Trujillano, Raquel; Santamaría Arana, Leticia; Gil Bravo, Antonio; Korili, Sophia A.; Ciuffi, Katia J.; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The rising global demand for hydrogen peroxide, recognized for its eco-friendly properties, underscores the need for greener synthesis methods. Traditional production processes pose environmental risks, while direct synthesis faces challenges like water formation, explosion hazards, and stability issues, limiting industrial application. On the other hand, Bisphenol A (BPA), an endocrine disruptor widely used in plastics, presents significant environmental and health concerns due to its potential leaching into food and water. The present work introduces efficient and selective photocatalysts aimed at sustainable hydrogen peroxide synthesis and BPA degradation. Both processes were enhanced by the synergistic properties of Fe2O3–TiO2 nanoparticles dispersed within a kaolinite matrix. The Fe2O3-TiO2 photocatalysts, characterized by photoluminescence spectroscopy and X-ray diffraction, showed reduced emission upon iron incorporation and anatase presence on the kaolinite surface. The photocatalytic activity was evaluated through hydroxylation of terephthalic acid, revealing a 127 umol/L min hydroxylation rate for the KaFeTi400 sample. BPA degradation studies indicated optimal performance in acidic conditions, achieving 96 % removal in 2 h and 98 % in 4 h, with the addition of H2O2 enhancing efficiency. Further, the photocatalyst facilitated benzyl alcohol oxidation to benzaldehyde, demonstrating a H2O2 production rate of 120 umol. These findings highlight the multifunctional capabilities and environmental benefits of the photocatalyst, underscoring its potential for sustainable hydrogen peroxide synthesis and broader applications in environmental remediation. The catalysts address the pressing challenges associated with hydrogen peroxide synthesis and pollutant removal, particularly in the context of sustainability and environmental impact.
  • PublicationOpen Access
    Synthesis of pollucite and analcime zeolites by recovering aluminum from a saline slag
    (Elsevier, 2021) Jiménez, Alejandro; Misol, Alexander; Morato, Álvaro; Rives, Vicente; Vicente, Miguel Ángel; Gil Bravo, Antonio; Institute for Advanced Materials and Mathematics - INAMAT2
    This work describes a valorization procedure for one of the most important wastes generated during aluminum recycling, namely, saline slag. This procedure was divided in two steps: a) recovery of aluminum or its compounds in various fractions, and b) the use of one of those fractions in the synthesis of two zeolites: analcime (NaAlSi2O6 center dot H2O) and pollucite (CsAlSi2O6 center dot nH(2)O). Saline slag was ground, sieved (1 mm), washed and separated into two fractions of different sizes, one larger and another smaller than 0.4 mm. The fraction smaller than 0.4 mm was treated under reflux conditions with NaOH or CsOH solutions. The extraction liquor contained aluminum and alkali metal cations; after adding the necessary amount of Si, hydrothermal synthesis was carried out, obtaining the zeolitic materials. Characterization of the solids obtained was carried out by powder X-ray diffraction, thermal analysis, FT-IR spectroscopy, element chemical analysis and electron microscopy. The valorization procedure proposed in this work showed that a high percentage of Al (close to 45 wt%) can be recovered from the fraction smaller than 0.4 mm and that the liquors extracted with NaOH or CsOH can be used as a source for the hydrothermal synthesis (200 degrees C for 24 h) of two zeolites of the analcime family, obtaining in both cases pure and crystalline solids.
  • PublicationOpen Access
    Photocatalytic degradation of trimethoprim on doped Ti-pillared montmorillonite
    (Elsevier, 2019) González, Beatriz; Trujillano, Raquel; Vicente, Miguel Ángel; Rives, Vicente; Korili, Sophia A.; Gil Bravo, Antonio; Institute for Advanced Materials and Mathematics - INAMAT2
    Montmorillonite pillared with titanium and doped with Cr3+ or Fe3+ has been tested for the photo-degradation of the antibiotic trimethoprim (trimethoxybenzyl-2,4-pyrimidinediamine) under different conditions, namely, in the dark or in UV light, with or without catalyst, finding excellent catalytic performance under photocatalytic conditions. The degradation by-products were preliminary analysed by mass spectrometry. The results suggested that the molecule broke in two halves, corresponding to its two existing rings. The process continued with the breakage of new fragments from the trimethoxybenzene half, these fragments later reacted with the methoxy groups in this part of the molecule, giving species with m/z values higher than that for the starting molecule, and with the breakage of new fragments.
  • PublicationOpen Access
    Optimization of hydrocalumite preparation under microwave irradiation for recovering aluminium from a saline slag
    (Elsevier, 2021) Jiménez, Alejandro; Misol, Alexander; Morato, Álvaro; Rives, Vicente; Vicente, Miguel Ángel; Gil Bravo, Antonio; Institute for Advanced Materials and Mathematics - INAMAT2
    Aluminium was successfully extracted by treating an aluminium slag with aqueous NaOH under reflux conditions. This solution was purified by precipitation of silicon species by addition of HCl up to pH = 1, and used for preparing hydrocalumite (Ca2Al(OH)6Cl·2H2O) by the coprecipitation method. The effect of temperature on the properties of hydrocalumite prepared under microwave (MW) irradiation was studied. Characterization of the obtained solid was carried out by powder X-ray diffraction (PXRD), thermal analysis, FT–IR spectroscopy, chemical analysis, electron microscopy and N2 adsorption–desorption at −196 °C. The results showed that the use of the extracted aluminium solution allowed to obtain hydrocalumite by the coprecipitation method and that the temperature of the MW ageing treatment had a large effect on the formation of side phases, in addition to hydrocalumite. The results here reported demonstrate that formation of hydrocalumite is an effective method for the recovering of aluminium from its waste.
  • PublicationOpen Access
    Removal of heavy metals from aqueous solutions by adsorption on zeolites synthesized from aluminum saline slags
    (Elsevier, 2024-10-31) Jiménez, Alejandro; Trujillano, Raquel; Rives, Vicente; Vicente, Miguel Ángel; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    Three heavy metals (Cu2+, Cd2+ and Pb2+) were removed from aqueous solutions using zeolites prepared from saline slags, a very important waste generated during aluminum recycling. Zeolites were characterized by powder X-ray diffraction, thermal analysis, Fourier transform infrared spectroscopy, X-ray microfluorescence, element chemical analysis, nitrogen adsorption at -196 °C and electron microscopy. The textural and structural properties of X-type faujasite zeolite convert it in a promising adsorbent in aqueous streams. Removal of the heavy metals was evaluated in batch mode, studying the adsorbent dose, the initial concentration of the heavy metal, the selectivity of the solid in case of mixtures with various metal cations and the recyclability of the solid. The kinetic and equilibrium results were evaluated using both pseudo-first- and pseudo-second-order kinetics, and Langmuir, Freundlich and Toth equation isotherms for the equilibrium. The time needed to reach equilibrium was between 10 and 20 min. Faujasite was highly effective in removing Cu2+, Cd2+ and Pb2+ from aqueous solutions, much higher than analcime and pollucite, other two zeolites recently synthesized by us from aluminum slags, and used in this work for comparison purposes. The maximum adsorption capacity was 591 mg/g for Pb2+, 304 mg/g for Cu2+ and 279 mg/g for Cd2+.
  • PublicationOpen Access
    Synthesis strategies of alumina from aluminum saline slags
    (Elsevier, 2023) Grande López, Lucía; Vicente, Miguel Ángel; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Aluminum saline slags is a waste of the metallurgical industry that presents serious environmental problems since it needs very extensive areas for its disposal, the toxicity it causes in the atmosphere and groundwater, in addition to high transportation costs. The valorization of this residue by the synthesis of alumina, a compound widely used in the chemical industry, generates a high impact and great interest. In this work, the strategies for synthesizing alumina from aluminum saline slags are reviewed in a context of growing demand for this metal and environmental crisis. The first sections present the aluminum production processes, both from natural bauxite (primary process) and from the recycling of materials with a high aluminum content (secondary process); paying attention to the waste generated and what environmental problems they produce. The main investigations that have allowed to address the recovery of the waste generated are described below, focusing on the processes of recovery/extraction of the aluminum present in its composition. The aluminum in these residues can be found as a metal or forming other compounds such as simple or mixed oxides. Chemical processes are the most relevant, especially those that deal with the acid and alkaline extraction of the metal. The most important section of the work reports on the methods of synthesis of Al2O3, highlighting the methods of precipitation, sol-gel, hydrothermal synthesis, and combustion, among others. The work ends with a summary and conclusions section.