Person:
García Yoldi, Íñigo

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

García Yoldi

First Name

Íñigo

person.page.departamento

ORCID

person.page.upna

811271

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Systematic diffusion-ordered spectroscopy for the selective determination of molecular weight in real lignins and fractions arising from base-catalyzed depolymerization reaction mixtures
    (American Chemical Society, 2020) Cornejo Ibergallartu, Alfonso; García Yoldi, Íñigo; Galilea Gonzalo, Rebeca; Hablich Alvarracin, Karina Lissett; Gil Idoate, María José; Martínez Merino, Víctor; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Gobierno de Navarra / Nafarroako Gobernua
    The valorization of biorefinery downstream lignin fractions is a key issue in increasing the sustainability of second-generation biofuels. The development of reliable methodologies for the selective determination of the apparent masses of the poly(hydroxy)-aromatic ethers arising from lignin depolymerization reaction is crucial. Diffusion-ordered spectroscopy (DOSY) has been tested to estimate the molecular weight in downstream biorefinery lignins and base-catalyzed depolymerization reaction mixtures. Excellent correlation was found in the calibration of molecular weight and diffusion coefficients with standards. DOSY permitted the selective estimation of the apparent masses of different fractions in the lignin and in the depolymerization reaction mixtures, providing a more profound knowledge of the reaction mixture composition than that obtained with traditional size-exclusion chromatography (SEC). Excellent correlations have been achieved in the estimation of the apparent masses of poly(hydroxy)-aromatic ethers between SEC and DOSY. This permits a reliable estimation of the molecular weight of different fractions in the lignin and in the depolymerization product, which is essential for their further applications.
  • PublicationOpen Access
    Pretreatment and enzymatic hydrolysis for the efficient production of glucose and furfural from wheat straw, pine and poplar chips
    (Elsevier, 2019) Cornejo Ibergallartu, Alfonso; Alegría Dallo, Irantzu; García Yoldi, Íñigo; Sarobe Martínez, Íñigo; Sánchez, David; Otazu, Eduardo; Funcia, Ibai; Gil Idoate, María José; Martínez Merino, Víctor; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Gobierno de Navarra / Nafarroako Gobernua
    A flexible approach to a two-step biorefinery for the production of glucose and furfural from three different feedstocks is presented. Pretreatment conditions were selected to drive the production towards the generation of glucose or furfural. Harsh pretreatment conditions produced solids with highly accessible glycan contents for the enzymatic hydrolysis with 100% glucose yields when wheat straw or poplar chips were used as feedstock. Mild conditions afforded xylan-rich hydrolysates that could be efficiently transformed to furfural, either under conventional or microwave heating in biphasic media. Yields for the transformation of xylan from feedstocks ranged between 45% and 90% depending on the feedstock, the thermal pretreatment and the cyclodehydration conditions. Up to 12.6 kg of glucose and materials and 2.5 kg of furfural can be produced starting from 50 kg of biomass. A new analytical methodology based on 13C NMR that provided good quality analytical results is also presented.