Person:
Sehrai, Daniyal Ali

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Sehrai

First Name

Daniyal Ali

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

ORCID

0000-0002-1664-8544

person.page.upna

813011

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Metasurface-based wideband MIMO antenna for 5G millimeter-wave systems
    (Institute of Electrical and Electronics Engineers Inc., 2021) Sehrai, Daniyal Ali; Asif, Muhammad; Shah, Wahab Ali; Khan, Jalal; Ullah, Ibrar; Ibrar, Muhammad; Jan, Saeedullah; Alibakhshikenari, Mohammad; Falcone Lanas, Francisco Javier; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    This paper presents a metasurface based multiple-input multiple-output (MIMO) antenna with a wideband operation for millimeter-wave 5G communication systems. The antenna system consists of four elements placed with a 90 degree shift in order to achieve a compact MIMO system while a 2× 2 non-uniform metasurface (total four elements) is placed at the back of the MIMO configuration to improve the radiation characteristics of it. The overall size of the MIMO antenna is 24× 24 mm2 while the operational bandwidth of the proposed antenna system ranges from 23.5-29.4 GHz. The peak gain achieved by the proposed MIMO antenna is almost 7dB which is further improved up to 10.44 dB by employing a 2× 2 metasurface. The total efficiency is also observed more than 80% across the operating band. Apart from this, the MIMO performance metrics such as envelope correlation coefficient (ECC), diversity gain (DG), and channel capacity loss (CCL) are analyzed which demonstrate good characteristics. All the simulations of the proposed design are carried out in computer simulation technology (CST) software, and measured results reveal good agreement with the simulated one which make it a potential contender for the upcoming 5G communication systems.
  • PublicationOpen Access
    Design of high gain base station antenna array for mm-wave cellular communication systems
    (Springer Nature, 2023) Sehrai, Daniyal Ali; Khan, Jalal; Abdullah, Mujeeb; Asif, Muhammad; Alibakhshikenari, Mohammad; Virdee, Bal S.; Shah, Wahab Ali; Khan, Salahuddin; Ibrar, Muhammad; Jan, Saeedullah; Ullah, Amjad; Falcone Lanas, Francisco Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Millimeter wave (mm-Wave) wireless communication systems require high gain antennas to overcome path loss effects and thereby enhance system coverage. This paper presents the design and analysis of an antenna array for high gain performance of future mm-wave 5G communication systems. The proposed antenna is based on planar microstrip technology and fabricated on 0.254 mm thick dielectric substrate (Rogers-5880) having a relative permittivity of 2.2 and loss tangent of 0.0009. The single radiating element used to construct the antenna array is a microstrip patch that has a configuration resembling a two-pronged fork. The single radiator has a realized gain of 7.6 dBi. To achieve the gain required by 5G base stations, a 64-element array antenna design is proposed which has a bore side gain of 21.2 dBi at 37.2 GHz. The 8 × 8, 8 × 16, and 8 × 32 antenna array designs described here were simulated and optimized using CST Microwave Studio, which is a 3D full-wave electromagnetic solver. The overall characteristics of the array in terms of reflection-coefficient and radiation patterns makes the proposed design suitable for mm-Wave 5G and other communication systems.