Person: Wilhelmi, Miguel R.
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Wilhelmi
First Name
Miguel R.
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ORCID
0000-0002-6714-7184
person.page.upna
5169
Name
5 results
Search Results
Now showing 1 - 5 of 5
Publication Open Access Significados conflictivos de ecuación y función en estudiantes de profesorado de secundaria(Universidad de Salamanca, 2014) Wilhelmi, Miguel R.; Godino, Juan D.; Lasa Oyarbide, Aitzol; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaEn el marco de una acción formativa sobre reconocimiento de las características del razonamiento algebraico elemental con estudiantes del máster de secundaria, especialidad matemáticas, se detecta que las nociones de función y ecuación interfieren la una en la otra. Así, en situaciones elementales en las que es preciso movilizar una función, identificando las variables independiente, dependiente y regla de correspondencia, los estudiantes interpretan la situación en términos de incógnitas y ecuaciones. Se describen algunas respuestas prototípicas de este fenómeno, el contexto y metodología de la investigación, así como algunas implicaciones para la formación de profesores.Publication Open Access Niveles de algebrización de las prácticas matemáticas escolares. Articulación de las perspectivas ontosemiótica y antropológica(Sociedad Española de Investigación en Educación Matemática (SEIEM), 2015) Godino, Juan D.; Neto, Teresa; Wilhelmi, Miguel R.; Aké, Lilia P.; Etchegaray, S.; Lasa Oyarbide, Aitzol; Matemáticas; MatematikaEn el marco del enfoque ontosemiótico del conocimiento y la instrucción matemáticos se ha propuesto una caracterización del razonamiento algebraico en Educación Primaria basada en la distinción de tres niveles de algebrización. Tales niveles se definen teniendo en cuenta los tipos de representaciones usadas, los procesos de generalización implicados y el cálculo analítico que se pone en juego en la actividad matemática correspondiente. En este trabajo ampliamos el modelo anterior mediante la inclusión de otros tres niveles más avanzados de razonamiento algebraico que permiten analizar la actividad matemática en Educación Secundaria. Estos niveles están basados en la consideración de 1) el uso y tratamiento de parámetros para representar familias de ecuaciones y funciones; 2) estudio de las estructuras algebraicas en sí mismas, sus definiciones y propiedades. Asimismo, se analizan las concordancias y complementariedades de este modelo con las tres etapas del proceso de algebrización propuestas en el marco de la teoría antropológica de lo didáctico.Publication Open Access Diseño de un cuestionario para evaluar conocimientos didáctico-matemáticos sobre razonamiento algebraico elemental(Universitat Autònoma de Barcelona, 2015) Godino, Juan D.; Aké, Lilia P.; Lacasta Zabalza, Eduardo; Lasa Oyarbide, Aitzol; Wilhelmi, Miguel R.; Matemáticas; MatematikaLa promoción del pensamiento algebraico en alumnos de primaria requiere implementar acciones formativas específicas para los profesores, lo que a su vez implica elaborar instrumentos de evaluación del estado de sus conocimientos didáctico-matemáticos sobre el tema. En este trabajo presentamos resultados del estudio realizado para la construcción de un cuestionario de evaluación de los conocimientos didáctico-matemáticos de estudiantes de magisterio sobre razonamiento algebraico elemental. Describimos las categorías de conocimientos algebraicos tenidas en cuenta (estructuras, funciones y modelización) y las categorías de conocimientos didácticos (facetas epistémica, cognitiva, instruccional y ecológica). Así mismo se describen y analizan las tareas incluidas en el cuestionario informando de su validez de contenido.Publication Open Access Desarrollo de la competencia de análisis ontosemiótico de futuros profesores de matemáticas(Universidad Complutense de Madrid, 2018) Giacomone, Belén; Godino, Juan D.; Wilhelmi, Miguel R.; Blanco, Teresa F.; Matemáticas; MatematikaUna enseñanza adecuada de las matemáticas requiere el conocimiento y la competencia de los profesores para identificar la variedad de objetos y significados involucrados en la resolución de tareas escolares. En este artículo se describe el diseño, la implementación y análisis retrospectivo de un proceso formativo dirigido a futuros profesores de matemáticas, centrado en desarrollar esta llamada competencia de análisis ontosemiótico. Para esto, se utilizan algunas herramientas teóricas y metodológicas del Enfoque Ontosemiótico del conocimiento y la instrucción matemáticos. En esta experiencia, los futuros profesores primero resuelven tareas matemáticas sobre visualización y razonamiento diagramático; luego, analizan los objetos y significados puestos en juego en la resolución de cada tarea implementada. Además, las estrategias que los estudiantes producen en sus soluciones se discuten y comparten en entornos reales de clase. El análisis de los datos es cualitativo y está orientado a la identificación de prácticas didácticas significativas sobre el estado inicial de los significados personales de los estudiantes, el reconocimiento de conflictos y progresos en el desarrollo de la competencia pretendida. Los datos se recogen de las respuestas escritas de los estudiantes, las notas del investigador observador y las grabaciones en audio de las clases. Los resultados revelan la complejidad involucrada en el desarrollo de esta competencia de análisis ontosemiótico, así como su relevancia para lograr una enseñanza de las matemáticas de alta calidad. Finalmente, el análisis retrospectivo del diseño formativo permite al profesor y al investigador reflexionar sobre cada uno de los factores que condicionan los procesos de enseñanza y así, determinar mejoras potenciales para futuras implementaciones.Publication Open Access Niveles de algebrización de la actividad matemática escolar: implicaciones para la formación de maestros(Universitat Autònoma de Barcelona, 2014) Godino, Juan D.; Aké, Lilia P.; Gonzato, Margherita; Wilhelmi, Miguel R.; Matemáticas; MatematikaEl desarrollo del razonamiento algebraico elemental desde los primeros niveles educativos es un objetivo propuesto en diversas investigaciones y orientaciones curriculares. En consecuencia, es importante que el profesor de educación primaria conozca las características del razonamiento algebraico y sea capaz de seleccionar y elaborar tareas matemáticas adecuadas que permitan la progresiva introducción del razonamiento algebraico en la escuela primaria. En este trabajo, presentamos un modelo en el que se diferencian tres niveles de razonamiento algebraico elemental que puede utilizarse para reconocer características algebraicas en la resolución de tareas matemáticas. Presentamos el modelo junto con ejemplos de actividades matemáticas, clasificadas según los distintos niveles de algebrización. Estas actividades pueden ser usadas en la formación de profesores a fin de capacitarlos para el desarrollo del sentido algebraico en sus alumnos.