López Taberna, Jesús
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
López Taberna
First Name
Jesús
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
20 results
Search Results
Now showing 1 - 10 of 20
Publication Open Access Inertial response and inertia emulation in DFIG and PMSG wind turbines: emulating inertia from a supercapacitor-based energy storage system(IEEE, 2021) Sacristán Sillero, Javier; Goñi, Naiara; Berrueta Irigoyen, Alberto; López Taberna, Jesús; Rodríguez Rabadan, José Luis; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe increasing wind power penetration in electrical power systems results in a reduction of operative conventional power plants. These plants include synchronous generators directly connected to the grid. Facing a change in grid frequency, these generators inherently respond by varying their stored kinetic energy and their output power, which contributes to grid stability. Such a response is known as inertial response. Wind turbines (WTs) are mostly based on Doubly-Fed Induction Generator (DFIG) or Permanent Magnet Synchronous Generator (PMSG) machines. Their power electronics interface decouples the electromechanical behaviour of the generator from the power grid, making their inertial response null or insignificant. Therefore, in order not to weaken the frequency response of the power system, WTs must be able to react to frequency variations by changing their output power, i.e., emulating an inertial response. Common techniques for inertia emulation in WTs rely on pitch control and stored kinetic energy variation. This contribution proposes a strategy (applicable for both DFIG and PMSG) which uses the energy stored in a supercapacitor connected to the back-to-back converter DC link to emulate the inertial response. Its performance is compared by simulation with aforementioned common techniques, showing ability to remove certain limitations.Publication Open Access MIMO based decoupling strategy for grid connected power converters controlled in the synchronous reference frame(IEEE, 2018) Samanes Pascual, Javier; Gubía Villabona, Eugenio; López Taberna, Jesús; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaPower converters are frequently connected to the grid through a LCL filter, controlling its power transfer through a current control loop in the synchronous reference frame. In this reference frame, cross coupling terms appear between the current and voltages of the passive components, which, without a proper decoupling strategy, penalize the converter transient response and the current control adjustment. In this work, an intuitive decoupling strategy is presented to improve the dynamic behavior, based on Multiple-Input-Multiple-Output systems theory. The approach developed is particularly interesting in extremely weak grids, allowing an easier adjustment of the main controller.Publication Open Access Dual-stage control strategy for a three-level neutral point clamped converter with selective harmonic mitigation PWM(IEEE, 2023-11-01) Rosado Galparsoro, Leyre; Norambuena, Margarita; Samanes Pascual, Javier; Lezana, Pablo; Gubía Villabona, Eugenio; López Taberna, Jesús; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaGrid-connected converters must meet the requirements imposed by grid codes, such as harmonic emission limits and grid voltage support during voltage dips. Selective harmonic mitigation pulsewidth modulation (SHMPWM) is a very interesting technique for high power converters to meet the maximum harmonic emission levels, while keeping a low switching frequency. However, the combination of this modulation with a proportional integral (PI) controller requires slow dynamics, which makes it difficult to comply with the dynamic response requirements of grid codes. As an alternative, model predictive control (MPC) offers a very fast dynamic response, but a wide spread harmonic spectrum in steady state. Thus, the combination of MPC with a PI controller with SHMPWM is advantageous. In this work, a dual-stage control strategy is implemented. During transients, finite control set MPC (FCS-MPC) is activated to rapidly drive the current to the desired reference, while in steady state, the PI controller with SHMPWM is used. Therefore, the dual-stage control strategy allows to comply with the two requirements of grid codes, becoming a suitable strategy for grid-connected converters.Publication Open Access Optimized DFIG electrical design under voltage sags(IEEE, 2021) Urtasun Salinas, Ibai; Larrea León, Pablo; López Taberna, Jesús; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis paper addresses the dual problem (electrical-mechanical) of DFIG-based wind turbines under voltage sags and proposes an optimized solution that, starting from a design aimed to mitigate the mechanical loads in the structural components of the wind turbine, provides the electrical capability to meet the most demanding grid codes.Publication Open Access On the testing, characterization, and evaluation of PV inverters and dynamic MPPT performance under real varying operating conditions(Wiley, 2007) Sanchis Gúrpide, Pablo; López Taberna, Jesús; Ursúa Rubio, Alfredo; Gubía Villabona, Eugenio; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaThe increasing number of photovoltaic inverters that are coming on to the PV marketstresses the need to carry out a dynamic characterization of these elements and theirmaximum power point tracking (MPPT) algorithms under real operating conditions.In order to make these conditions repeatable at the laboratory, PV array simulatorsare used. However, actual simulators, including the commercial simulators, recreateonly a single or small set of PV array characteristic curves in which quite commonlytheoretical calculations are included in order to simulate irradiance and temperatureartificial variations. This is far from being a recreation of the real and long dynamicbehavior of a PVarray or generator. The testing and evaluation of the performance ofPV inverters and MPPT algorithms has to be carried out when the PV system movesdynamically according to real operating conditions, including processes such asrapidly changing atmospheric conditions, partial shadows, dawn, and nightfall. Thispaper tries to contribute to the analysis of this problem by means of an electronicsystem that both measures the real evolution of the characteristic curves of PVarraysat outdoor operation and then recreates them at the laboratory to test PV inverters.This way the equipment can highlight the different performances of PV inverters andMPPT techniques when they operate under real operating conditions. As an example,two commercial inverters are tested and analyzed under the recreated behavior of aPV generator during 2 singular days that include processes of partial shading and fastirradiance variations.Publication Open Access Modeling of small wind turbines based on PMSG with diode bridge for sensorless maximum power tracking(Elsevier, 2013) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; San Martín Biurrun, Idoia; López Taberna, Jesús; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe Permanent Magnet Synchronous Generator (PMSG) with diode bridge is frequently used in small Wind Energy Conversion Systems (WECS). This configuration is robust and cheap, and therefore suitable for small WECS. In order to achieve Maximum Power Point Tracking (MPPT) with no mechanical sensors, it is possible to impose the relationship between the DC voltage and the DC current on the optimum operating points. However, this relationship is difficult to calculate theoretically since the whole system is involved. In fact, as there is no model of the whole system in the literature, the optimum curve IL*(Vdc) is obtained with experimental tests or simulations. This paper develops an accurate model of the whole WECS, thereby making it possible to relate the electrical variables to the mechanical ones. With this model, it is possible to calculate the optimum curve IL*(Vdc) from commonly-known system parameters and to control the system from the DC side. Experimental results validate the theoretical analysis and show that maximum power is extracted for actual wind speed profiles.Publication Open Access Inclusion of a supercapacitor energy storage system in DFIG and full-converter PMSG wind turbines for inertia emulation(IEEE, 2023) Berrueta Irigoyen, Alberto; Sacristán Sillero, Javier; López Taberna, Jesús; Rodríguez Izal, José Luis; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThe energy transition towards renewables must be accelerated to achieve climate targets. To do so, renewable power plants, such as wind power plants (WPPs) must replace conventional power plants (CPPs). Transmission System Operators require this replacement to be made without weakening the frequency response of power systems, so it must be ensured that WPPs match the response of CPPs to grid frequency variations. CPPs consist of grid-tied synchronous generators that inherently react to frequency variations by modifying their stored kinetic energy and their output power, thereby contributing to grid stability. Such response is known as inertial response. By contrast, wind turbines (WTs) are mostly based on either doubly-fed induction generators (DFIG) or permanent magnet synchronous generators (PMSG). Their power electronics interface decouples the electromechanical behavior of the generator from the power grid, leading to a negligible inertial response. Therefore, in order to replace CPPs with WPPs, WTs must be able to react to frequency variations by changing their output power, i.e., emulating an inertial response. Currently implemented inertia emulation strategies in WTs rely on pitch control and stored kinetic energy variation. This paper proposes an alternative strategy, using the energy stored in a supercapacitor directly connected to the back-to-back converter DC link to emulate inertia. Its performance is validated by means of simulation for both DFIG and PMSG. Compared to state-of-the-art techniques, it allows a more accurate emulation of grid-tied synchronous generators, favoring the replacement of these generators by WTs.Publication Open Access Capacitor current feedback active damping with lagged compensator for DFIG wind turbines with LCL filter(IEEE, 2020) Rosado Galparsoro, Leyre; Samanes Pascual, Javier; Gubía Villabona, Eugenio; López Taberna, Jesús; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaSeveral active damping strategies have been proposed in the literature for grid-connected converters with LCL filter but there are not specific strategies for DFIG wind turbines. In this system, there is an interaction between the two converters of the back-to-back conversion structure, which must be properly modeled in order to design effective damping strategies for the LCL filter resonant poles. This paper proposes a robust active damping strategy for DFIG wind turbines with LCL filter that considers the special features of this system. In this technique the filter capacitor current is fed back through a lag compensator that adjusts the delay of the feedback loop to emulate a virtual impedance that has dominant resistive behavior in the range of possible resonance frequencies. It is shown that a similar damping of the LCL filter resonance is achieved when the strategy isimplemented in either of the two converters.Publication Open Access Selective harmonic mitigation: limitations of classical control strategies and benefits of model predictive control(IEEE, 2023) Rosado Galparsoro, Leyre; Samanes Pascual, Javier; Gubía Villabona, Eugenio; López Taberna, Jesús; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaSelective harmonic mitigation pulsewidth modulation (SHMPWM) combined with model predictive control (MPC) is a promising approach for grid-connected power converters. SHMPWM can guarantee grid code compliance in steady state, e.g. grid harmonic injection, with a reduced output converter filter, while MPC improves dynamic response and allows grid code compliance in the event of grid transients. This paper presents a survey of the MPC strategies already published in the literature developed for their use with SHMPWM. The existing strategies fall into two categories: direct model predictive control with an implicit selective harmonic mitigation modulator, and direct model predictive control based on finite control set (FCS-MPC). One representative control strategy of each group is compared to each other and to the performance of classical proportional- integral (PI) controllers combined with SHMPWM. The goal is to identify the potential benefits of MPC for grid-connected power converters, and determine the main advantages and limitations of the two selected state-of-the-art control strategies. Their performance is assessed through Hardware-in-the-Loop (HIL) experimental results in terms of real-time implementation, harmonic content grid code compliance, dynamic response and performance under grid transients.Publication Open Access Sub-synchronous resonance damping control strategy for DFIG wind turbines(IEEE, 2020) Samanes Pascual, Javier; Gubía Villabona, Eugenio; López Taberna, Jesús; Burgos, Rolando; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónDoubly-fed induction generator (DFIG) wind turbines connected to capacitive series-compensated transmission lines are prone to exhibit oscillatory behavior. The phenomena is called sub-synchronous resonances (SSRs), as these oscillations occur at frequencies below the fundamental component. This paper first develops a modeling methodology for DFIG wind turbines, based on impedance matrices, that is applied to model a real wind farm where SSRs were reported. The stability analysis performed shows how the interaction between the grid-side converter and the rotor-side converter contribute to the instability of DFIG wind energy conversion systems connected to series compensated grids. With this model, we propose a simple sub-synchronous resonance control strategy based on an orthogonal proportional action applied to the rotor currents, and a variable gain in the PI controller adjusted as a function of the DFIG rotational speed. This control strategy depends only on the rotor currents, which are local and already measured variables in any DFIG wind turbine, and is implemented in the rotor side converter, so it does not imply an additional cost at wind farm or wind turbine level and can be applied to any DFIG wind energy conversion system (WECS). Additionally, it proves to be robust for any line impedance series compensation level, and it does not need real-time information concerning the grid at which the wind turbine is connected, or its parameters. A real case study is considered, where the sub-synchronous resonance damping strategy presented in this work is able to stabilize the system for every possible line impedance compensation level.