Acha Santamaría, Blanca
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Acha Santamaría
First Name
Blanca
person.page.departamento
Ciencias de la Salud
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Liquid biopsy in alzheimer's disease patients reveals epigenetic changes in the PRLHR gene(MDPI, 2023) Macías, Mónica; Acha Santamaría, Blanca; Corroza, Jon; Urdánoz Casado, Amaya; Roldán, Miren; Robles Solano, Maitane; Sánchez Ruiz de Gordoa, Javier; Erro Aguirre, María Elena; Jericó Pascual, Ivonne; Blanco Luquin, Idoia; Mendióroz Iriarte, Maite; Ciencias de la Salud; Osasun ZientziakIn recent years, new DNA methylation variants have been reported in genes biologically relevant to Alzheimer’s disease (AD) in human brain tissue. However, this AD-specific epigenetic information remains brain-locked and unreachable during patients’ lifetimes. In a previous methylome performed in the hippocampus of 26 AD patients and 12 controls, we found higher methylation levels in AD patients in the promoter region of PRLHR, a gene involved in energy balance regulation. Our aim was to further characterize PRLHR’s role in AD and to evaluate if the liquid biopsy technique would provide life access to this brain information in a non-invasive way. First, we extended the methylation mapping of PRLHR and validated previous methylome results via bisulfite cloning sequencing. Next, we observed a positive correlation between PRLHR methylation levels and AD-related neuropathological changes and a decreased expression of PRLHR in AD hippocampus. Then, we managed to replicate the hippocampal methylation differences in plasma cfDNA from an additional cohort of 35 AD patients and 35 controls. The isolation of cfDNA from the plasma of AD patients may constitute a source of potential epigenetic biomarkers to aid AD clinical management.Publication Open Access NXN gene epigenetic changes in an adult neurogenesis model of Alzheimer's disease(MDPI, 2022) Blanco Luquin, Idoia; Acha Santamaría, Blanca; Urdánoz Casado, Amaya; Gómez Orte, Eva; Roldán, Miren; Pérez Rodríguez, Diego R.; Cabello, Juan; Mendióroz Iriarte, Maite; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako GobernuaIn view of the proven link between adult hippocampal neurogenesis (AHN) and learning and memory impairment, we generated a straightforward adult neurogenesis in vitro model to recapitulate DNA methylation marks in the context of Alzheimer’s disease (AD). Neural progenitor cells (NPCs) were differentiated for 29 days and Aβ peptide 1–42 was added. mRNA expression of Neuronal Differentiation 1 (NEUROD1), Neural Cell Adhesion Molecule 1 (NCAM1), Tubulin Beta 3 Class III (TUBB3), RNA Binding Fox-1 Homolog 3 (RBFOX3), Calbindin 1 (CALB1), and Glial Fibrillary Acidic Protein (GFAP) was determined by RT-qPCR to characterize the culture and framed within the multistep process of AHN. Hippocampal DNA methylation marks previously identified in Contactin-Associated Protein 1 (CNTNAP1), SEPT5-GP1BB Readthrough (SEPT5-GP1BB), T-Box Transcription Factor 5 (TBX5), and Nucleoredoxin (NXN) genes were profiled by bisulfite pyrosequencing or bisulfite cloning sequencing; mRNA expression was also measured. NXN outlined a peak of DNA methylation overlapping type 3 neuroblasts. Aβ-treated NPCs showed transient decreases of mRNA expression for SEPT5-GP1BB and NXN on day 9 or 19 and an increase in DNA methylation on day 29 for NXN. NXN and SEPT5-GP1BB may reflect alterations detected in the brain of AD human patients, broadening our understanding of this disease.