Person: Teberio Berdún, Fernando
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Teberio Berdún
First Name
Fernando
person.page.departamento
Ingeniería Eléctrica y Electrónica
person.page.instituteName
ORCID
0000-0002-4603-2273
person.page.upna
810720
Name
7 results
Search Results
Now showing 1 - 7 of 7
Publication Open Access Multipactor breakdown analysis of Ku-band meandered low-pass filter(2022) Sami, Abdul; Teberio Berdún, Fernando; Arnedo Gil, Israel; Martín Iglesias, Petronilo; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Arregui Padilla, Iván; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn this work, a very compact rectangular waveguide low-pass filter with meandered topology based on commensurate lines for Ku-band satellite applications is analysed for high-power handling capabilities. The device consists of rectangular waveguide sections properly cascaded to form a meandered topology to obtain the desired value of the local reflection coefficients. which are essential to achieve the target frequency response and also to keep large mechanical gaps. Hence, this technique allows us not only to design a filter with compact size but a filter geometry which is suitable for high power applications. In the paper, the low-pass filter based on commensurate lines is first designed by cascading E-plane mitered bends (±90° EMBs) in CST Microwave Studio (MWS) and then the values of the electromagnetic fields at the passband frequencies are exported to Spark3D to perform a multipactor analysis. The critical areas inside the device where the multipactor discharge occurs will also be identified in the high-power analysis. https://doi.org/10.5281/zenodo.7343236Publication Open Access Integrating multiple stubs in stepped-impedance filter aiming for high selectivity(IET, 2022) Sami, Abdul; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Arnedo Gil, Israel; Calero Fernández, Ibai; Teberio Berdún, Fernando; Martín Iglesias, Petronilo; Benito Pertusa, David; Arregui Padilla, Iván; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónA design technique to include multiple and fully-controlled transmission zeros (TZs) in the frequency response of rectangular waveguide commensurate-line stepped-impedance filters is presented in this letter. These bandpass filters (BPFs) are known for having reduced sensitivities against manufacturing inaccuracies and are composed of multiple waveguide sections. In order to improve their selectivity, 3λg/4 and λg/4-stubs are included to create multiple TZs around the passband. The proposed technique allows us to add multiple stubs in a single section and, therefore, only minor adjustments in the affected part of the filter are required, which simplifies the overall design process. The technique has been verified with a design example with four TZs (two on each side) near the passband.Publication Open Access High-power filter design in waveguide technology: future generation of waveguide satellite filters in payloads handling increasing bit rates and numbers of channels(IEEE, 2020) Arregui Padilla, Iván; Teberio Berdún, Fernando; Arnedo Gil, Israel; Percaz Ciriza, Jon Mikel; Martín Iglesias, Petronilo; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenTo design a filter for a particular application, many issues must first be considered. Which technology will be the most convenient? What design technique will provide better results for a particular set of frequency specifications? Once the device has been designed, will it fulfill all of the (not only electrical) requirements? It is not always easy to answer such questions in advance. In this article, we try to shed some light on these questions when our aim is the design of filters for high-power operation.Publication Open Access Compact harmonic rejection filter for C-band high-power satellite applications(IEEE, 2020) Teberio Berdún, Fernando; Martín Iglesias, Petronilo; Arregui Padilla, Iván; Arnedo Gil, Israel; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenA compact high-power low-pass filter for C-band broadband satellite applications is presented in this paper. The filter is composed of three different sections. A 9th-order compact high-power multi-ridge structure achieves the fundamental mode stopband and the suppression of all-higher order modes. The required slope between the pass- and the stopband is accomplished by means of two step-shaped bandstop elements separated by very short waveguide sections. The passband of the filter is achieved through two compact matching networks. The filter is only 164-mm long, has less than 0.05 dB of insertion loss, handles 9.6 kW (single-carrier multipactor analysis), and has a very wide stopband (up to Ku-band). A dramatic size reduction has been achieved with respect to other commercially available solutions.Publication Open Access Synthesis of rectangular waveguide filters with smooth profile oriented to direct metal additive manufacturing(IEEE, 2023) Percaz Ciriza, Jon Mikel; Hussain, Jabir; Arregui Padilla, Iván; Teberio Berdún, Fernando; Benito Pertusa, David; Martín Iglesias, Petronilo; Arnedo Gil, Israel; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIn this paper, a novel design method for rectangular waveguide filters intended for fabrication using direct metal additive manufacturing is proposed. The synthesized filters will feature a smooth profile that allows us to fabricate them orienting the filter propagation axis in the vertical building direction, achieving an optimum configuration for direct metal additive manufacturing fabrication. The novel design method is valid for any all-pole transfer function, which is initially implemented with a commensurate-line distributed unit element prototype. The impulse response of that initial prototype is then properly interpolated to obtain the target response for a smooth-profiled filter with similar length and profile excursion. Finally, the target impulse response just generated is implemented in rectangular waveguide technology employing a novel inverse scattering synthesis technique that relies on the coupled-mode theory to model the electromagnetic behavior of the waveguide filter. The novel inverse scattering synthesis technique is general and also valid for the case of filters with very high rejection levels, which is of great relevance in rectangular waveguide technology. A Ku-band low-pass filter with stringent satellite specifications is designed using the proposed method, fabricated by means of a direct metal additive manufacturing technique, and measured with a vector network analyzer. A very good agreement is achieved between the simulated and measured results, fulfilling the required specifications and demonstrating the feasibility and performance of the novel design method.Publication Open Access Robust tolerance design of bandpass filter with improved frequency response for Q-band satellite applications(IEEE, 2021) Sami, Abdul; Teberio Berdún, Fernando; Miranda Santafé, Luis; Arnedo Gil, Israel; Martín Iglesias, Petronilo; Benito Pertusa, David; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Arregui Padilla, Iván; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenA rectangular waveguide bandpass filter for Q-band with simple fabrication is proposed in this letter. The design is based on the use of the first passband replica of commensurate-line stepped-impedance structures and achieves the suppression of their inherent low-pass response. In order to do it, the filter is implemented by rectangular waveguide sections with different widths and heights that can be analytically calculated. The technique is validated by a 9th order Chebyshev filter with passband between 40 and 43 GHz and fabrication yield equal to 84 % for a manufacturing error of ± 20 μm. The measured results of the prototype fabricated with CNC milling are in good agreement with the simulated ones.Publication Open Access Metal 3D printing for RF/microwave high-frequency parts(Springer, 2022) Martín Iglesias, Petronilo; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Teberio Berdún, Fernando; Arregui Padilla, Iván; Marechal, M.; Calves, P.; Hazard, M.; Pambaguian, L.; Brandao, A.; Rodríguez Castillo, S.; Martin, T.; Percaz Ciriza, Jon Mikel; Iza, V.; Martín-Iglesias, Santiago; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenSpace Systems have been historically characterised by high performance, high reliability and high cost. Every new generation of space systems tends to improve performance, keep as much as possible reliability, speeding the lead time and lower the cost. Aggressive approach is nowadays followed by some of the players of the new space ecosystem where, for instance, reli- ability can be relaxed thanks for the in-orbit redundancy or robustness to failures by having a constellation with a high number of satellites. This push towards the technology and system limit requires to investigate new methods for the manufacturing of RF/Microwave parts. RF devices such as those based on waveguide structures, benefit from an additive manufacturing approach in terms of radio frequency (RF) performance and compactness. However each manufacturing approach comes with specific features and limitations which need to be well understood and, in some cases, even taking advantage of them. This paper provides a short review of some of the RF/Microwave parts already manufactured using this technology. The paper will focus mainly on metal 3D printing parts since this technology is, at the moment, well accepted by the space community.