Gandía Pascual, Luis

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Gandía Pascual

First Name

Luis

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 28
  • PublicationOpen Access
    Environmental impact improvement of chitosan-based mixed-matrix membranes manufacture for CO2 gas separation by life cycle assessment
    (Wiley, 2023) Echarri San Martín, Itsaso Andrea; Casado-Coterillo, Clara; Rumayor, Marta; Navajas León, Alberto; Gandía Pascual, Luis; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The environmental impacts of the manufacture of chitosan (CS) and polymeric poly(1-trimethylsilyl-1-propyne) (PTMSP) mixed-matrix membranes (MMMs) for CO2 separation by life cycle assessment (LCA) are compared. An ionic liquid of non-reported toxicity is used in CS membranes to enhance the mechanical strength, and different fillers are used to increase mechanical and functional properties: ETS-10, ZIF-8, HKUST-1, and Zeolite A. Results with the same CO2 permeation flux indicate that ETS-10/IL-CS is the membrane manufacture with highest impacts due to its lower permeability. When comparing impacts with same permeation areas, the polymeric one is the membrane with highest impacts. Biopolymer and polymer manufacture are the components with highest contribution to the total environmental impacts of each membrane. To decrease all their impacts below fossil polymer membrane for the same CO2 permeation flux, CS membranes permeabilities should be improved by a numerical factor of 1000, 100, and 2 for the ETS-10, ZIF-8, and HKUST-1/IL-CS MMMs, respectively.
  • PublicationEmbargo
    How bimetallic CoMo carbides and nitrides improve CO oxidation
    (Elsevier, 2023) Villasana, Yanet; García Macedo, Jorge A.; Navarro Puyuelo, Andrea; Reyero Zaragoza, Inés; Lara, Hugo; Bimbela Serrano, Fernando; Gandía Pascual, Luis; Brito, Joaquin L.; Méndez, Franklin J.; Institute for Advanced Materials and Mathematics - INAMAT2
    CO elimination is an important step for the proper management of gaseous effluents from various processes, thus avoiding adverse impacts on the environment and human health. In this study, different bimetallic Al2O3-supported CoMo catalysts have been developed, characterized, and tested in the CO oxidation reaction, based on their respective oxides, carbides, and nitrides phases. The parent CoMo-oxide catalyst (CoMo) was prepared by impregnation and then transformed to its carburized (CoMoC) and nitrided (CoMoN) forms using temperatureprogrammed reaction methods under controlled atmospheres of CH4/H2 and NH3, respectively. The catalytic results demonstrate that the CoMoC catalyst exhibits higher activity compared to its CoMoN counterpart, and both are more active than the parent CoMo catalyst. Furthermore, the reduction temperature and space velocity were key process factors, which notably influenced activity and kinetic parameters, while the increase of reduction time does not seem to improve catalytic behavior. These results were associated with a better metal dispersion, and relatively higher reduction grade and metallic surface area on the carbides and nitrides, opening the possibility that new adsorption sites may be created. The catalytic results compare favorably with other nonnoble metal catalysts, such as Cr-, Cu-, Fe-, and Ni-based samples, and highlight the potential of using carbides and nitrides as alternative formulations to enhance the performance of CO oxidation.
  • PublicationOpen Access
    Exploring a low-cost valorization route for amazonian cocoa pod husks through thermochemical and catalytic upgrading of pyrolysis vapors
    (American Chemical Society, 2023) Villasana, Yanet; Armenise, Sabino; Ábrego, Javier; Hablich, Karina; Bimbela Serrano, Fernando; Cornejo Ibergallartu, Alfonso; Gandía Pascual, Luis; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Ecuador as an international leader in the production of cocoa beans produced more than 300 000 tons in 2021; hence, the management and valorization of the 2 MM tons of waste generated annually by this industry have a strategic and socioeconomic value. Consequently, appropriate technologies to avoid environmental problems and promote sustainable development and the bioeconomy, especially considering that this is a megadiverse country, are of the utmost relevance. For this reason, we explored a low-cost pyrolysis route for valorizing cocoa pod husks from Ecuador’s Amazonian region, aiming at producing pyrolysis liquids (bio-oil), biochar, and gas as an alternative chemical source from cocoa residues in the absence of hydrogen. Downstream catalytic processing of hot pyrolysis vapors using Mo- and/or Ni-based catalysts and standalone γ-Al2O3 was applied for obtaining upgraded bio-oils in a laboratory-scale fixed bed reactor, at 500 °C in a N2 atmosphere. As a result, bimetallic catalysts increased the bio-oil aqueous phase yield by 6.6%, at the expense of the organic phase due to cracking reactions according to nuclear magnetic resonance (NMR) and gas chromatography–mass spectrometry (GC–MS) results. Overall product yield remained constant, in comparison to pyrolysis without any downstream catalytic treatment (bio-oil ∼39.0–40.0 wt % and permanent gases 24.6–26.6 wt %). Ex situ reduced and passivated MoNi/γ-Al2O3 led to the lowest organic phase and highest aqueous phase yields. The product distribution between the two liquid phases was also modified by the catalytic upgrading experiments carried out, according to heteronuclear single-quantum correlation (HSQC), total correlation spectroscopy (TOCSY), and NMR analyses. The detailed composition distribution reported here shows the chemical production potential of this residue and serves as a starting point for subsequent valorizing technologies and/or processes in the food and nonfood industry beneficiating society, environment, economy, and research.
  • PublicationOpen Access
    Reaction monitoring by ultrasounds in a pseudohomogeneous medium: triglyceride ethanolysis for biodiesel production
    (MDPI, 2022) Reyero Zaragoza, Inés; Gandía Pascual, Luis; Arzamendi Manterola, Gurutze; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The sound propagation speed measurement us is used for monitoring triglyceride ethanol-ysis in a broad range of reaction conditions (mainly, temperature: 23–50◦C; ethanol/oil: from 6 to 24 mol/mol). Experimentally, us slightly increased with the reaction time in all cases as a result of the contribution of its dynamic mixture components. Nomoto’s expression for homogeneous mixtures offered suitable us estimation but with values notably higher than the experimental ones due to the resistance to sound propagation offered by the ethanol/oil interphase (non-homogeneous medium). Our strategy was based on both the comparison of the experimental us values and the theoretical ones correlated by means of triglyceride conversion and on the estimation of the sound speed of oil/ethanol that could emulate the resistance offered by the interphase. The evolution of the reactions was predicted quite well for all the experiments carried out with very different reaction rates. Nev-ertheless, at the beginning of the reaction, the estimated conversion (outside of industrial interests) showed important deviations. The presence of the intermediate reaction products, diglycerides, and monoglycerides could be responsible for those deviations.
  • PublicationOpen Access
    Highly selective CO formation via CO2 hydrogenation over novel ceria-based high-entropy oxides (HEOs)
    (Elsevier, 2025-03-01) Cortázar, María; Lafuente Adiego, Marta; Navarro Puyuelo, Andrea; García, Xènia; Llorca Piqué, Jordi; Reyero Zaragoza, Inés; Bimbela Serrano, Fernando; Gandía Pascual, Luis; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In the present study, new ceria-based high-entropy oxides (HEOs) were investigated as CO2 hydrogenation catalysts. The nominal composition was (Ce0.5Ni0.1Co0.1Cu0.1Zn0.1Mg0.1)Ox and the synthesis was accomplished through the citrate complexing sol-gel method. Characterization techniques utilized including ICP-AES, in situ XRD and in situ XPS, SEM-EDS, HR-TEM and HAADF-STEM, Raman spectroscopy, H2-TPR, CO2-TPD and N2 physical adsorption. The physicochemical characterization and the catalytic results revealed that the conditions of the thermal treatments at which the oxides were subjected critically determined the catalytic performance, especially the CO2 hydrogenation products selectivities. Calcination in air and/or reduction in hydrogen conducted at temperatures below 500 °C led to active but poorly selective catalysts that produced both methane and CO with significant yields. This was mainly attributed to the presence of metallic Cu, Ni and Co on the catalysts that appeared to be supported on ceria doped with the rest of the formulation elements. In contrast, thermal treatments at 750 °C favored the formation of a rocksalt entropy-stabilized (NiCoCuZnMg)Ox HEO supported on ceria that has stood out for showing an excellent selectivity towards the reverse water¿gas shift (RWGS) reaction. This catalyst led to CO selectivities of almost 100 % over a very wide range of reaction temperatures (300-700 °C). Long-term stability tests (100 h) showed only a slight decrease in CO2 conversion, while CO selectivity remained stable at nearly 100 % at 400 °C. XRD characterization of the used catalysts evidenced that, whereas the basic catalyst structure remained, some metallic copper exsolved during reduction and reaction period. These results are relevant and very promising, opening a door to the development of new catalysts for the valorization of CO2 through the RWGS reaction, thus expanding the low-temperature limit at which this process can be carried out selectively.
  • PublicationOpen Access
    Life cycle assessment in higher education: design and implementation of a teaching sequence activity
    (MDPI, 2024) Navajas León, Alberto; Echarri San Martín, Itsaso Andrea; Gandía Pascual, Luis; Pozuelo, Jorge; Cascarosa, Esther; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    The latest studies show that to achieve the Sustainable Development Goals on education, there must be a focus on adequately training higher education students. In this work, we present a study about the Life Cycle Analysis of knowledge of products and processes of engineering students. This aspect is very relevant in engineering education since it has direct implications on sustainability. The first step was to identify what the learning problems were, and taking them into account, a specific teaching sequence was designed and implemented over three academic years. Two activities, on an increasing level of complexity, of the application of Life Cycle Assessment are shown in this paper. The first one is the Life Cycle Analysis comparison between two steel and polypropylene pieces. The second one is the Life Cycle Analysis comparison between three different ends of life of a polypropylene piece: mechanical recycling, incineration, and landfill. Data on the evolution of students' marks while solving a ¿one step more difficult project¿ throughout these courses have been collected. The results show a generalized learning by the students about Life Cycle Analysis.
  • PublicationOpen Access
    Life cycle assessment of power-to-methane systems with CO2 supplied by the chemical looping combustion of biomass
    (Elsevier, 2022) Navajas León, Alberto; Mendiara, Teresa; Gandía Pascual, Luis; Abad, Alberto; García Labiano, Francisco; Diego, Luis F. de; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    Power-to-methane (PtM) systems may allow fluctuations in the renewable energy supply to be smoothed out by storing surplus energy in the form of methane. These systems work by combining the hydrogen produced by electrolysis with carbon dioxide from different sources to produce methane via the Sabatier reaction. The present work studies PtM systems based on the CO2 supplied by the chemical looping combustion (CLC) of biomass (PtM-bioCLC). Life- cycle- assessment (LCA) was performed on PtM-bioCLC systems to evaluate their environmental impact with respect to a specific reference case. The proposed configurations have the potential to reduce the value of the global warming potential (GWP) climate change indicator to the lowest values reported in the literature to date. Moreover, the possibility of effectively removing CO2 from the atmosphere through the concept of CO2 negative emissions was also assessed. In addition to GWP, as many as 16 LCA indicators were also evaluated and their values for the studied PtM-bioCLC systems were found to be similar to those of the reference case considered or even significantly lower in such categories as resource use-depletion, ozone depletion, human health, acidification potential and eutrophication. The results obtained highlight the potential of these newly proposed PtM schemes.
  • PublicationOpen Access
    Renewable hydrocarbon production from waste cottonseed oil pyrolysis and catalytic upgrading of vapors with Mo-Co and Mo-Ni catalysts supported on γ-Al2O3
    (MDPI, 2021) Alves Melo, Josué; Santana de Sá, Mirele; Moral Larrasoaña, Ainara; Bimbela Serrano, Fernando; Gandía Pascual, Luis; Wisniewski, Alberto; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work, the production of renewable hydrocarbons was explored by the means of waste cottonseed oil (WCSO) micropyrolysis at 500◦C. Catalytic upgrading of the pyrolysis vapors was studied using α-Al2O3, γ-Al2O3, Mo-Co/γ-Al2O3, and Mo-Ni/γ-Al2O3 catalysts. The oxygen removal efficiency was much lower in non-catalytic pyrolysis (18.0%), whilst γ-Al2O3 yielded a very high oxygen removal efficiency (91.8%), similar to that obtained with Mo-Co/γ-Al2O3 (92.8%) and higher than that attained with Mo-Ni/γ-Al2O3 (82.0%). Higher conversion yields into total renewable hydrocarbons were obtained with Mo-Co/γ-Al2O3 (61.9 wt.%) in comparison to Mo-Ni/γ-Al2O3 (46.6%). GC/MS analyses showed a relative chemical composition of 31.3, 86.4, and 92.6% of total renewable hydrocarbons and 58.7, 7.2, and 4.2% of oxygenated compounds for non-catalytic bio-oil (BOWCSO), BOMoNi and BOMoCo, respectively. The renewable hydrocarbons that were derived from BOMoNi and BOMoCo were mainly composed by olefins (35.3 and 33.4%), aromatics (31.4 and 28.9%), and paraffins (13.8 and 25.7%). The results revealed the catalysts’ effectiveness in FFA decarbonylation and decarboxylation, as evidenced by significant changes in the van Krevelen space, with the lowest O/C ratio values for BOMoCo and BOMoNi (O/C = 0–0.10) in relation to the BOWCSO (O/C = 0.10–0.20), and by a decrease in the presence of oxygenated compounds in the catalytic bio-oils.
  • PublicationOpen Access
    A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks
    (Elsevier, 2022) Cordero-Lanzac, Tomas; Ramirez, Adrián; Navajas León, Alberto; Gevers, Lieven; Brunialti, Sirio; Gandía Pascual, Luis; Aguayo, Andrés T.; Sarathy, S. Mani; Gascon, Jorge; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The success of catalytic schemes for the large-scale valorization of CO2 does not only depend on the development of active, selective and stable catalytic materials but also on the overall process design. Here we present a multidisciplinary study (from catalyst to plant and techno-economic/lifecycle analysis) for the production of green methanol from renewable H2 and CO2. We combine an in-depth kinetic analysis of one of the most promising recently reported methanol-synthesis catalysts (InCo) with a thorough process simulation and techno-economic assessment. We then perform a life cycle assessment of the simulated process to gauge the real environmental impact of green methanol production from CO2. Our results indicate that up to 1.75 ton of CO2 can be abated per ton of produced methanol only if renewable energy is used to run the process, while the sensitivity analysis suggest that either rock-bottom H2 prices (1.5 $ kg−1) or severe CO2 taxation (300 $ per ton) are needed for a profitable methanol plant. Besides, we herein highlight and analyze some critical bottlenecks of the process. Especial attention has been paid to the contribution of H2 to the overall plant costs, CH4 trace formation, and purity and costs of raw gases. In addition to providing important information for policy makers and industrialists, directions for catalyst (and therefore process) improvements are outlined.
  • PublicationOpen Access
    Innovative flow-through reaction system for the sustainable production of phenolic monomers from lignocellulose catalyzed by supported Mo2C
    (Wiley, 2024) Maisterra Udi, Maitane; Atienza Martínez, María; Hablich Alvarracin, Karina Lissett; Moreira, Rui; Martínez Merino, Víctor; Gandía Pascual, Luis; Cornejo Ibergallartu, Alfonso; Bimbela Serrano, Fernando; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
    Molybdenum carbide supported on activated carbon (β-Mo2C/AC) has been tested as catalyst in the reductive catalytic fractionation (RCF) of lignocellulosic biomass both in batch and in Flow-Through (FT) reaction systems. High phenolic monomer yields (34 wt.%) and selectivity to monomers with reduced side alkyl chains (up to 80 wt.%) could be achieved in batch in the presence of hydrogen. FT-RCF were made with no hydrogen feed, thus via transfer hydrogenation from ethanol. Similar selectivity could be attained in FT-RCF using high catalyst/biomass ratios (0.6) and high molybdenum loading (35 wt.%) in the catalyst, although selectivity decreased with lower catalyst/biomass ratios or molybdenum contents. Regardless of these parameters, high delignification of the lignocellulosic biomass and similar monomer yields were observed in the FT mode (13-15 wt.%) while preserving the holocellulose fractions in the delignified pulp. FT-RCF system outperforms the batch reaction mode in the absence of hydrogen, both in terms of activity and selectivity to reduced monomers that is attributed to the two-step non-equilibrium processes and the removal of diffusional limitations that occur in the FT mode. Even though some molybdenum leaching was detected, the catalytic performance could be maintained with negligible loss of activity or selectivity for 15 consecutive runs.