Gandía Pascual, Luis
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Gandía Pascual
First Name
Luis
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
26 results
Search Results
Now showing 1 - 10 of 26
Publication Open Access Rutas y retos para la valorización de biogás(Universidad Libre (Colombia), 2017) Navarro Puyuelo, Andrea; Reyero Zaragoza, Inés; Moral Larrasoaña, Ainara; Bimbela Serrano, Fernando; Gandía Pascual, Luis; Química Aplicada; Kimika AplikatuaLas tecnologías de digestión anaerobia para procesar corrientes residuales (fracción orgánica de residuos de vertedero, lodos de estaciones depuradoras de aguas residuales, purines, etc.) han originado un incremento de la producción de biogás. El biogás está compuesto principalmente por metano y dióxido de carbono, aunque contiene otros componentes minoritarios e impurezas que obligan a efectuar tratamientos para su purificación y acondicionamiento. Existen diversas alternativas para el aprovechamiento y la valorización de este gas, como son: su utilización directa en la generación de energía calorífica y/o eléctrica, su conversión a biometano, y la producción de gas de síntesis (H2+CO), que posteriormente permite producir combustibles líquidos y/o compuestos químicos de interés como el metanol. En este trabajo se presenta una revisión general de las alternativas de valorización de biogás, con énfasis en los procesos de reformado catalítico, tales como el reformado seco o con vapor de agua y procesos de reformado combinado incluyendo la oxidación parcial.Publication Open Access Oxidative steam reforming of glycerol. A review(Elsevier, 2021) Moreira, Rui; Bimbela Serrano, Fernando; Gandía Pascual, Luis; Ferreira, Abel; Sánchez, José Luis; Portugal, Antonio; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis review article presents the state-of-the-art on the catalytic oxidative steam reforming (OSR) of glycerol to produce syngas. Concerning the different technologies proposed for the catalytic OSR of glycerol, the following key points can be highlighted: (1) the robustness is much higher than other reforming technologies, (2) several catalysts can work with low deactivation, some of which can recover almost full activity by suitable regeneration, (3) syngas production by catalytic OSR of glycerin is higher than with concurrent technologies, (4) their scaling-up remains an unrealized task, (5) the thermodynamics of the process has been sufficiently covered in the literature, (6) there is a significant lack of kinetic and mechanistic studies that could help gaining deeper insight on the process, (7) novel concepts and reactor designs must be proposed for their development at larger scales, (8) new catalyst formulations must be developed for attaining higher resistance against oxidation and (9) process intensification could help developing them at larger scales.Publication Open Access Functionalization of 3D printed ABS filters with MOF for toxic gas removal(Elsevier, 2020) Pellejero, Ismael; Almazán, Fernando; Lafuente, María; Urbiztondo, Miguel A.; Dobrek, Martin; Bechelany, Mikhael; Julbe, Anne; Gandía Pascual, Luis; Institute for Advanced Materials and Mathematics - INAMAT2; Gobierno de Navarra / Nafarroako Gobernua, PC052-23; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaAcrylonitrile butadiene styrene (ABS) is one of the most extensively used polymer in 3D printing manufacturing due to its competitive thermal and mechanical properties. Recently, a special attention has been devoted to novel ABS composites featuring extra functionalities e.g. in the area of VOC removal. Herein, we report on a facile protocol for the functionalization of 3D printed ABS filters with a MOF (Metal- Organic Framework) material (ZIF-8) targeting the conception of attractive gas filters. The proposed synthesis strategy consists in low temperature ALD (Atomic Layer Deposition) of ZnO on the ABS grid followed by the hydrothermal conversion of ZnO to ZIF-8, both steps being conducted at 60 °C. In such way, the method enables an effective growth of ZIF-8 without altering the stability of the polymeric ABS support. The as-fabricated ABS/ZIF-8 filters offer a promising adsorption behaviour for dimethyl methylphosphonate (~20.4 mg of DMMP per gram of ZIF-8), thus proving their potential for toxic gas capture applications.Publication Open Access Influence of the power supply on the energy efficiency of an alkaline water electrolyser(Elsevier, 2009) Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Gubía Villabona, Eugenio; Gandía Pascual, Luis; Diéguez Elizondo, Pedro; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza; Química Aplicada; Kimika Aplikatua; Gobierno de Navarra / Nafarroako GobernuaElectric energy consumption represents the greatest part of the cost of the hydrogen produced by water electrolysis. An effort is being carried out to reduce this electric consumption and improve the global efficiency of commercial electrolysers. Whereas relevant progresses are being achieved in cell stack configurations and electrodes performance, there are practically no studies on the effect of the electric power supply topology on the electrolyser energy efficiency. This paper presents an analysis on the energy consumption and efficiency of a 1 N m3 h1 commercial alkaline water electrolyser and their dependence on the power supply topology. The different topologies of power supplies are first summarised, analysed and classified into two groups: thyristor-based (ThPS) and transistor-based power supplies (TrPS). An Electrolyser Power Supply Emulator (EPSE) is then designed, developed and satisfactorily validated by means of simulation and experimental tests. With the EPSE, the electrolyser is characterised both obtaining its I–V curves for different temperatures and measuring the useful hydrogen production. The electrolyser is then supplied by means of two different emulated electric profiles that are characteristic of typical ThPS and TrPS. Results show that the cell stack energy consumption is up to 495 W h N m3 lower when it is supplied by the TrPS, which means 10% greater in terms of efficiency.Publication Open Access Kinetic analysis and CFD simulations of the photocatalytic production of hydrogen in silicone microreactors from water-ethanol mixtures(Elsevier, 2017) Castedo, Alejandra; Uriz Doray, Irantzu; Soler, Lluís; Gandía Pascual, Luis; Llorca Piqué, Jordi; Kimika Aplikatua; Institute for Advanced Materials and Mathematics - INAMAT2; Química AplicadaSilicone microreactors containing microchannels of 500 μm width in a single or triple stack configuration have been manufactured, coated with an Au/TiO2 photocatalyst and tested for the photocatalytic production of hydrogen from water-ethanol gaseous mixtures under UV irradiation. Computational fluid dynamics (CFD) simulations have revealed that the design of the distributing headers allowed for a homogeneous distribution of the gaseous stream within the channels of the microreactors. A rate equation for the photocatalytic reaction has been developed from the experimental results obtained with the single stack operated under different ethanol partial pressures, light irradiation intensities and contact times. The hydrogen photoproduction rate has been expressed in terms of a Langmuir-Hinshelwood-type equation that accurately describes the process considering that hydrogen is produced through the dehydrogenation of ethanol to acetaldehyde. This equation incorporates an apparent rate constant (kapp) that has been found to be proportional to the intrinsic kinetic rate constant (k), and that depends on the light intensity (I) as follows: kapp = k·I0.65. A three-dimensional isothermal CFD model has been developed in which the previously obtained kinetic equation has been implemented. The model adequately describes the production of hydrogen of both the single and triple stacks. Moreover, the specific hydrogen productions (i.e. per gram of catalyst) are very close for both stacks thus suggesting that the scaling-up of the process could be accomplished by simply numbering-up. However, small deviations between the experimental and predicted hydrogen production suggest that a fraction of the radiation is absorbed by the microreactor components which should be taken into account for scaling-up purposes.Publication Open Access Experimental study of the performance and emission characteristics of an adapted commercial four-cylinder spark ignition engine running on hydrogen-methane mixtures(Elsevier, 2014) Diéguez Elizondo, Pedro; Urroz Unzueta, José Carlos; Marcelino Sádaba, Sara; Pérez Ezcurdia, Amaya; Benito Amurrio, Marta; Sáinz Casas, David; Gandía Pascual, Luis; Ingeniería; IngeniaritzaThe use of hydrogen/methane mixtures with low methane contents as fuels for internal combustion engines (ICEs) may help to speed up the development of the hydrogen energy market and contribute to the decarbonization of the transportation sector. In this work, a commercial 1.4 L four-cylinder Volkswagen spark-ignition engine previously adapted to operate on pure hydrogen has been fueled with hydrogen/methane mixtures with 5–20 vol.% methane (29.6–66.7 wt.%). An experimental program has been executed by varying the fuel composition, air-to-fuel ratio (λ), spark advance and engine speed. A discussion of the results regarding the engine performance (brake torque, brake mean effective pressure, thermal efficiency) and emissions (nitrogen oxides, CO and unburned hydrocarbons) is presented. The results reveal that λ is the most influential variable on the engine behavior due to its marked effect on the combustion temperature. As far as relatively high values of λ have to be used to prevent knock, the effect on the engine performance is negative. In contrast, the specific emissions of nitrogen oxides decrease due to a reduced formation of thermal NOx. A clear positive effect of reducing the spark advance on the specific NOx emissions has been observed as well. As concerns CO and unburned hydrocarbons (HCs), their specific emissions increase with the methane content of the fuel mixture, as expected. However, they also increase as λ increases in spite of the lower fuel concentration due to a proportionally higher reduction of the power. Finally, the effect of the increase of the engine speed is positive on the CO and HCs emissions but negative on that of NOx due to improved mixing and higher temperature associated to intensified turbulence in the cylinders.Publication Open Access In situ synthesis of SERS-active Au@POM nanostructures in a microfluidic device for real-time detection of water pollutants(American Chemical Society, 2020) Lafuente Adiego, Marta; Pellejero, Ismael; Clemente, Alberto; Urbiztondo, Miguel A.; Mallada, Reyes; Reinoso, Santiago; Pina, María del Pilar; Gandía Pascual, Luis; Institute for Advanced Materials and Mathematics - INAMAT2; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe present a simple, versatile and low-cost approach for the preparation of SERS-active regions within a microfluidic channel 50 cm in length. The approach involves the UV-light-driven formation of polyoxometalate-decorated gold nanostructures, Au@POM (POM: H3PW12O40 (PW) and H3PMo12O40 (PMo)), that self-assemble in situ on the surface of the PDMS microchannels without any extra functionalization procedure. The fabricated LoCs were characterized by SEM, UV-Vis, Raman, XRD and XPS techniques. The SERS activity of the resulting Au@POM–coated lab-on-a-chip (LoC) devices was evaluated in both static and flow conditions using Rhodamine R6G. The SERS response of Au@PW–based LoCs was found superior to Au@PMo counterparts and outstanding when compared to reported data on metal@POM nanocomposites. We demonstrate the potentialities of both Au@POM–coated LoCs as analytical platforms for real time detection of the organophosphorous pesticide Paraoxon-methyl at 10-6 M concentration level.Publication Open Access Comparative performance of coke oven gas, hydrogen and methane in a spark ignition engine(Elsevier, 2020) Ortiz Imedio, Rafael; Ortiz, A.; Urroz Unzueta, José Carlos; Diéguez Elizondo, Pedro; Gorri, D.; Gandía Pascual, Luis; Ortiz, I.; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; IngenieríaIn this study, coke oven gas (COG), a by-product of coke manufacture with a high volumetric percentage of H2 and CH4, has been identified as auxiliary support and promising energy source in stationary internal combustion engines. Engine performance (power and thermal efficiency) and emissions (NOx, CO, CO2 and unburned hydrocarbons) of COG, pure H2 and pure CH4 have been studied on a Volkswagen Polo 1.4 L port-fuel injection spark ignition engine. Experiments have been done at optimal spark advance and wide open throttle, at different speeds (2000–5000 rpm) and various air-fuel ratios (λ) between 1 and 2. The obtained data revealed that COG combines the advantages of pure H2 and pure CH4, widening the λ range of operation from 1 to 2, with very good performance and emissions results comparable to pure gases. Furthermore, it should be highlighted that this approach facilitates the recovery of an industrial waste gas.Publication Open Access Pseudo-homogeneous and heterogeneous kinetic models of the NaOH-catalyzed methanolysis reaction for biodiesel production(MDPI, 2021) Zabala, Silvia; Reyero Zaragoza, Inés; Campo Aranguren, Idoia; Arzamendi Manterola, Gurutze; Gandía Pascual, Luis; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaMethanolysis of vegetable oils in the presence of homogeneous catalysts remains the most important process for producing biodiesel. However, there is still a lack of accurate description of the reaction kinetics. This is in part due to the complexity of the reacting system in which a large number of interconnected reactions take place simultaneously. In this work, attention is focused on the biphasic character of the reaction medium, formed by two immiscible liquid phases. The behavior of the phases is investigated regarding their physicochemical properties, mainly density and mutual solubility of the components, as well as composition. In addition, two kinetic models with different level of complexity regarding the biphasic character of the reaction medium have been developed. It has been found that a heterogeneous model considering the presence of the two phases and the distribution of the several compounds between them is indispensable to get a good description of the process in terms of oil conversion and products yields. The model captures the effects of the main variables of an isothermal batch methanolysis process: methanol/oil molar ratio, reaction time and catalyst concentration. Nevertheless, some adjustment is still required as concerns modelling of the saponification reactions and catalyst deactivation.Publication Open Access Effect of oxygen addition, reaction temperature and thermal treatments on syngas production from biogas combined reforming using Rh/alumina catalysts(Elsevier, 2019) Navarro Puyuelo, Andrea; Reyero Zaragoza, Inés; Moral Larrasoaña, Ainara; Bimbela Serrano, Fernando; Bañares, Miguel A.; Gandía Pascual, Luis; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2Dry reforming and partial oxidation of biogas were studied using 0.5 wt.% Rh/Al2O3 catalysts, both inhouse prepared and commercial. The effects of O2 addition on syngas yield and biogas conversion were studied at 700 C using different O2/CH4 ratios in the gas feeding stream: 0 (dry reforming), 0.12, 0.25, 0.45 and 0.50. The highest CH4 conversion, H2 yield and H2/CO molar ratio were obtained with an O2/CH4 ratio of 0.45, even though simultaneous valorization of both CH4 and CO2 could be best attained when the O2/CH4 ratio was 0.12. Increased biogas conversions and syngas yields were obtained by increasing reaction temperatures between 650 and 750 C. A detrimental influence on catalytic activity could be observed when the catalyst was subjected to calcination. Increasing the hold time of the thermal conditioning of the catalyst under inert flow altered Rh dispersion, though had no significant impact on catalyst performance in the dry reforming of methane at 700 C and 150 N L CH4/(gcat h). Characterization of spent samples after reaction by Raman spectroscopy revealed the presence of carbonaceous deposits of different nature, especially on the commercial(named as Rh com) and calcined (Rh calc) catalysts, though oxygen addition in the biogas feed significantly reduced the amount of these deposits. The Rh catalysts that had not been calcined after impregnation (Rh prep) did not present any noticeable characteristic peaks in the G and D bands. In particular, scanning transmission electron microscopy (STEM) images of the spent Rh prep sample revealed the presence of very highly dispersed Rh nanoparticles after reaction, of particle sizes of about 1 nm, and no noticeable C deposits. Combined oxy-CO2 reforming of biogas using highly dispersed and low metal-loading Rh/Al2O3 catalysts with low O2 dosage in the reactor feed can be used to effectively transform biogas into syngas.
- «
- 1 (current)
- 2
- 3
- »