Gandía Pascual, Luis

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Gandía Pascual

First Name

Luis

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 7 of 7
  • PublicationOpen Access
    Extraction of phenolic compounds from populus salicaceae bark
    (MDPI, 2022) Autor, Elsa; Cornejo Ibergallartu, Alfonso; Bimbela Serrano, Fernando; Maisterra Udi, Maitane; Gandía Pascual, Luis; Martínez Merino, Víctor; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate
    Lignocellulosic residues have the potential for obtaining high value-added products that could be better valorized if biorefinery strategies are adopted. The debarking of short-rotation crops yields important amounts of residues that are currently underexploited as low-grade fuel and could be a renewable source of phenolic compounds and other important phytochemicals. The isolation of these compounds can be carried out by different methods, but for attaining an integral valorization of barks, a preliminary extraction step for phytochemicals should be included. Using optimized extraction methods based on Soxhlet extraction can be effective for the isolation of phenolic compounds with antioxidant properties. In this study, poplar bark (Populus Salicaceae) was used to obtain a series of extracts using five different solvents in a sequential extraction of 24 h each in a Soxhlet extractor. Selected solvents were put in contact with the bark sample raffinate following an increasing order of polarity: n-hexane, dichloromethane, ethyl acetate, methanol, and water. The oily residues of the extracts obtained after each extraction were further subjected to flash chromatography, and the fractions obtained were characterized by gas chromatography coupled with mass spectrometry (GC–MS). The total phenolic content (TPC) was determined using the Folin–Ciocalteu method, and the antioxidant activity (AOA) of the samples was evaluated in their reaction with the free radical 2,2-Diphenyl-picrylhydrazyl (DPPH method). Polar solvents allowed for higher individual extraction yields, with overall extraction yields at around 23% (dry, ash-free basis). Different compounds were identified, including hydrolyzable tannins, phenolic monomers such as catechol and vanillin, pentoses and hexoses, and other organic compounds such as long-chain alkanes, alcohols, and carboxylic acids, among others. An excellent correlation was found between TPC and antioxidant activity for the samples analyzed. The fractions obtained using methanol showed the highest phenolic content (608 g of gallic acid equivalent (GAE)/mg) and the greatest antioxidant activity.
  • PublicationOpen Access
    Life cycle assessment of power-to-methane systems with CO2 supplied by the chemical looping combustion of biomass
    (Elsevier, 2022) Navajas León, Alberto; Mendiara, Teresa; Gandía Pascual, Luis; Abad, Alberto; García Labiano, Francisco; Diego, Luis F. de; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    Power-to-methane (PtM) systems may allow fluctuations in the renewable energy supply to be smoothed out by storing surplus energy in the form of methane. These systems work by combining the hydrogen produced by electrolysis with carbon dioxide from different sources to produce methane via the Sabatier reaction. The present work studies PtM systems based on the CO2 supplied by the chemical looping combustion (CLC) of biomass (PtM-bioCLC). Life- cycle- assessment (LCA) was performed on PtM-bioCLC systems to evaluate their environmental impact with respect to a specific reference case. The proposed configurations have the potential to reduce the value of the global warming potential (GWP) climate change indicator to the lowest values reported in the literature to date. Moreover, the possibility of effectively removing CO2 from the atmosphere through the concept of CO2 negative emissions was also assessed. In addition to GWP, as many as 16 LCA indicators were also evaluated and their values for the studied PtM-bioCLC systems were found to be similar to those of the reference case considered or even significantly lower in such categories as resource use-depletion, ozone depletion, human health, acidification potential and eutrophication. The results obtained highlight the potential of these newly proposed PtM schemes.
  • PublicationOpen Access
    A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks
    (Elsevier, 2022) Cordero-Lanzac, Tomas; Ramirez, Adrián; Navajas León, Alberto; Gevers, Lieven; Brunialti, Sirio; Gandía Pascual, Luis; Aguayo, Andrés T.; Sarathy, S. Mani; Gascon, Jorge; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The success of catalytic schemes for the large-scale valorization of CO2 does not only depend on the development of active, selective and stable catalytic materials but also on the overall process design. Here we present a multidisciplinary study (from catalyst to plant and techno-economic/lifecycle analysis) for the production of green methanol from renewable H2 and CO2. We combine an in-depth kinetic analysis of one of the most promising recently reported methanol-synthesis catalysts (InCo) with a thorough process simulation and techno-economic assessment. We then perform a life cycle assessment of the simulated process to gauge the real environmental impact of green methanol production from CO2. Our results indicate that up to 1.75 ton of CO2 can be abated per ton of produced methanol only if renewable energy is used to run the process, while the sensitivity analysis suggest that either rock-bottom H2 prices (1.5 $ kg−1) or severe CO2 taxation (300 $ per ton) are needed for a profitable methanol plant. Besides, we herein highlight and analyze some critical bottlenecks of the process. Especial attention has been paid to the contribution of H2 to the overall plant costs, CH4 trace formation, and purity and costs of raw gases. In addition to providing important information for policy makers and industrialists, directions for catalyst (and therefore process) improvements are outlined.
  • PublicationOpen Access
    Reaction monitoring by ultrasounds in a pseudohomogeneous medium: triglyceride ethanolysis for biodiesel production
    (MDPI, 2022) Reyero Zaragoza, Inés; Gandía Pascual, Luis; Arzamendi Manterola, Gurutze; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The sound propagation speed measurement us is used for monitoring triglyceride ethanol-ysis in a broad range of reaction conditions (mainly, temperature: 23–50◦C; ethanol/oil: from 6 to 24 mol/mol). Experimentally, us slightly increased with the reaction time in all cases as a result of the contribution of its dynamic mixture components. Nomoto’s expression for homogeneous mixtures offered suitable us estimation but with values notably higher than the experimental ones due to the resistance to sound propagation offered by the ethanol/oil interphase (non-homogeneous medium). Our strategy was based on both the comparison of the experimental us values and the theoretical ones correlated by means of triglyceride conversion and on the estimation of the sound speed of oil/ethanol that could emulate the resistance offered by the interphase. The evolution of the reactions was predicted quite well for all the experiments carried out with very different reaction rates. Nev-ertheless, at the beginning of the reaction, the estimated conversion (outside of industrial interests) showed important deviations. The presence of the intermediate reaction products, diglycerides, and monoglycerides could be responsible for those deviations.
  • PublicationOpen Access
    Acoustic and psychoacoustic levels from an internal combustion engine fueled by hydrogen vs. gasoline
    (Elsevier, 2022) Arana Burgui, Miguel; San Martín Murugarren, Ricardo; Urroz Unzueta, José Carlos; Diéguez Elizondo, Pedro; Gandía Pascual, Luis; Zientziak; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Ingeniería; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Whereas noise generated by road traffic is an important factor in urban pollution, little attention has been paid to this issue in the field of hydrogen-fueled vehicles. The objective of this study is to analyze the influence of the type of fuel (gasoline or hydrogen) on the sound levels produced by a vehicle with an internal combustion engine. A Volkswagen Polo 1.4 vehicle adapted for its bi-fuel hydrogen-gasoline operation has been used. Tests were carried out with the vehicle when stationary to eliminate rolling and aerodynamic noise. Acoustics and psychoacoustics levels were measured both inside and outside the vehicle. A slight increase in the noise level has only been found outside when using hydrogen as fuel, compared to gasoline. The increase is statistically significant, can be quantified between 1.1 and 1.7 dBA and is mainly due to an intensification of the 500 Hz band. Loudness is also higher outside the vehicle (between 2 and 4 sones) when the fuel is hydrogen. Differences in sharpness and roughness values are lower than the just-noticeable difference (JND) values of the parameters. Higher noise levels produced by hydrogen can be attributed to its higher reactivity compared to gasoline.
  • PublicationOpen Access
    Mesoporous Sn-in-MCM-41 catalysts for the selective sugar conversion to methyl lactate and comparative life cycle assessment with the biochemical process
    (American Chemical Society, 2022) Iglesia, Óscar de la; Sarango, Miryan; Munárriz Tabuenca, Mikel; Malankowska, Magdalena; Navajas León, Alberto; Gandía Pascual, Luis; Coronas, Joaquín; Téllez, Carlos; Ciencias; Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The use of biomass for the production of energy and higher added value products is a topic of increasing interest in line with growing environmental concerns and circular economy. Mesoporous material Sn-In-MCM-41 was synthesized for the first time and used as a catalyst for the transformation of sugars to methyl lactate (ML). This catalyst was characterized in depth by various techniques and compared with Sn-MCM-41 and In-MCM-41 catalysts. In the new Sn-In-MCM-41 material, both metals, homogeneously distributed throughout the mesoporous structure of MCM-41, actuate in a cooperative way in the different steps of the reaction mechanism. As a result, yields to ML of 69.4 and 73.9% in the transformation of glucose and sucrose were respectively reached. In the case of glucose, the ML yield 1.5 and 2.6 times higher than those of Sn-MCM-41 and In-MCM-41 catalysts, respectively. The Sn-In-MCM-41 catalyst was reused in the transformation of glucose up to four cycles without significant loss of catalytic activity. Finally, life cycle assessment comparison between chemical and biochemical routes to produce ML allowed us to conclude that the use of Sn-In-MCM-41 reduces the environmental impacts compared to Sn-MCM-41. Nevertheless, to make the chemical route comparable to the biochemical one, improvements in the catalyst and ML synthesis have to be achieved.
  • PublicationOpen Access
    Innovative catalyst integration on transparent silicone microreactors for photocatalytic applications
    (Elsevier, 2022) Pellejero, Ismael; Clemente, Alberto; Navajas León, Alberto; Vesperinas Oroz, José Javier; Urbiztondo, Miguel A.; Gandía Pascual, Luis; Institute for Advanced Materials and Mathematics - INAMAT2; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Reproducible and controllable incorporation and immobilization of catalysts and other active particles onto silicone microreactor channels is still challenging. In this work, we present an innovative fabrication protocol to attain affordable, custom-designed photocatalytic microreactors in a fast and simple manner. In this protocol, a 3D-printed ABS microreactor mold is first dip-coated with the photocatalyst, and subsequently, the catalytic layer is transferred onto the microchannel walls by indirect immobilization during the silicone casting and scaffold removal step. Serpentine-shaped microreactors have been satisfactorily fabricated with Au@POM-impregnated TiO2 nanoparticles (Au@POM/TiO2; Au 0.18 % w/w, POM: H3PW12O40) as the integrated photocatalytic layer. The suitability of our fabrication method has been validated on the basis of the excellent photocatalytic performance shown by the microreactors in a model test reaction such as the continuous-flow photoreduction of 4-nitrophenol to 4-aminophenol with NaBH4 and monitored by UV-Vis spectroscopy.