Gandía Pascual, Luis
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Gandía Pascual
First Name
Luis
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Life cycle assessment of power-to-methane systems with CO2 supplied by the chemical looping combustion of biomass(Elsevier, 2022) Navajas León, Alberto; Mendiara, Teresa; Gandía Pascual, Luis; Abad, Alberto; García Labiano, Francisco; Diego, Luis F. de; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2Power-to-methane (PtM) systems may allow fluctuations in the renewable energy supply to be smoothed out by storing surplus energy in the form of methane. These systems work by combining the hydrogen produced by electrolysis with carbon dioxide from different sources to produce methane via the Sabatier reaction. The present work studies PtM systems based on the CO2 supplied by the chemical looping combustion (CLC) of biomass (PtM-bioCLC). Life- cycle- assessment (LCA) was performed on PtM-bioCLC systems to evaluate their environmental impact with respect to a specific reference case. The proposed configurations have the potential to reduce the value of the global warming potential (GWP) climate change indicator to the lowest values reported in the literature to date. Moreover, the possibility of effectively removing CO2 from the atmosphere through the concept of CO2 negative emissions was also assessed. In addition to GWP, as many as 16 LCA indicators were also evaluated and their values for the studied PtM-bioCLC systems were found to be similar to those of the reference case considered or even significantly lower in such categories as resource use-depletion, ozone depletion, human health, acidification potential and eutrophication. The results obtained highlight the potential of these newly proposed PtM schemes.Publication Open Access Renewable hydrocarbon production from waste cottonseed oil pyrolysis and catalytic upgrading of vapors with Mo-Co and Mo-Ni catalysts supported on γ-Al2O3(MDPI, 2021) Alves Melo, Josué; Santana de Sá, Mirele; Moral Larrasoaña, Ainara; Bimbela Serrano, Fernando; Gandía Pascual, Luis; Wisniewski, Alberto; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work, the production of renewable hydrocarbons was explored by the means of waste cottonseed oil (WCSO) micropyrolysis at 500◦C. Catalytic upgrading of the pyrolysis vapors was studied using α-Al2O3, γ-Al2O3, Mo-Co/γ-Al2O3, and Mo-Ni/γ-Al2O3 catalysts. The oxygen removal efficiency was much lower in non-catalytic pyrolysis (18.0%), whilst γ-Al2O3 yielded a very high oxygen removal efficiency (91.8%), similar to that obtained with Mo-Co/γ-Al2O3 (92.8%) and higher than that attained with Mo-Ni/γ-Al2O3 (82.0%). Higher conversion yields into total renewable hydrocarbons were obtained with Mo-Co/γ-Al2O3 (61.9 wt.%) in comparison to Mo-Ni/γ-Al2O3 (46.6%). GC/MS analyses showed a relative chemical composition of 31.3, 86.4, and 92.6% of total renewable hydrocarbons and 58.7, 7.2, and 4.2% of oxygenated compounds for non-catalytic bio-oil (BOWCSO), BOMoNi and BOMoCo, respectively. The renewable hydrocarbons that were derived from BOMoNi and BOMoCo were mainly composed by olefins (35.3 and 33.4%), aromatics (31.4 and 28.9%), and paraffins (13.8 and 25.7%). The results revealed the catalysts’ effectiveness in FFA decarbonylation and decarboxylation, as evidenced by significant changes in the van Krevelen space, with the lowest O/C ratio values for BOMoCo and BOMoNi (O/C = 0–0.10) in relation to the BOWCSO (O/C = 0.10–0.20), and by a decrease in the presence of oxygenated compounds in the catalytic bio-oils.