Gandía Pascual, Luis

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Gandía Pascual

First Name

Luis

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Three-dimensional printing of acrylonitrile butadiene styrene microreactors for photocatalytic applications
    (American Chemical Society, 2020) Cabrera Barrios, Aarón; Pellejero, Ismael; Oroz Mateo, Tamara; Salazar, Cristina; Navajas León, Alberto; Fernandez Acevedo, Claudio; Gandía Pascual, Luis; Institute for Advanced Materials and Mathematics - INAMAT2; Gobierno de Navarra / Nafarroako Gobernua, PC003-004; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Miniaturization is a key aspect for many technological applications and the use of microreactors is an excellent solution for the intensification of chemical processes for a variety of applications. However, standard microfabrication requires large facilities and intricate fabrication protocols, and consequently it is not easily available, generally resulting in high production costs. Herein, we present a very cheap, fast and easy microreactor design for photocatalytic applications based on direct fused filament 3D printing as a facilitating and widespread technology. The microreactor consists of three bodies directly printed in ABS (Acrylonitrile Butadiene Styrene): a main body with a serpentine microchannel pattern where the photocatalyst is placed, a top holder with a transparent polymer window, and a base to clamp the parts. Several microreactor units were coated with TiO2 doped with Cu (2.4 wt.%) nanoparticles synthesized by FSP (Flame Spray Pyrolysis) and tested for the photocatalytic degradation of two water pollutants showing excellent performance.
  • PublicationOpen Access
    Kinetic analysis and CFD simulations of the photocatalytic production of hydrogen in silicone microreactors from water-ethanol mixtures
    (Elsevier, 2017) Castedo, Alejandra; Uriz Doray, Irantzu; Soler, Lluís; Gandía Pascual, Luis; Llorca Piqué, Jordi; Kimika Aplikatua; Institute for Advanced Materials and Mathematics - INAMAT2; Química Aplicada
    Silicone microreactors containing microchannels of 500 μm width in a single or triple stack configuration have been manufactured, coated with an Au/TiO2 photocatalyst and tested for the photocatalytic production of hydrogen from water-ethanol gaseous mixtures under UV irradiation. Computational fluid dynamics (CFD) simulations have revealed that the design of the distributing headers allowed for a homogeneous distribution of the gaseous stream within the channels of the microreactors. A rate equation for the photocatalytic reaction has been developed from the experimental results obtained with the single stack operated under different ethanol partial pressures, light irradiation intensities and contact times. The hydrogen photoproduction rate has been expressed in terms of a Langmuir-Hinshelwood-type equation that accurately describes the process considering that hydrogen is produced through the dehydrogenation of ethanol to acetaldehyde. This equation incorporates an apparent rate constant (kapp) that has been found to be proportional to the intrinsic kinetic rate constant (k), and that depends on the light intensity (I) as follows: kapp = k·I0.65. A three-dimensional isothermal CFD model has been developed in which the previously obtained kinetic equation has been implemented. The model adequately describes the production of hydrogen of both the single and triple stacks. Moreover, the specific hydrogen productions (i.e. per gram of catalyst) are very close for both stacks thus suggesting that the scaling-up of the process could be accomplished by simply numbering-up. However, small deviations between the experimental and predicted hydrogen production suggest that a fraction of the radiation is absorbed by the microreactor components which should be taken into account for scaling-up purposes.