Lafuente López, Julio

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Lafuente López

First Name

Julio

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 7 of 7
  • PublicationOpen Access
    Reemplazo de la función de pooling de redes neuronales convolucionales por combinaciones lineales de funciones crecientes
    (Universidad de Málaga, 2021) Rodríguez Martínez, Iosu; Lafuente López, Julio; Sesma Sara, Mikel; Herrera, Francisco; Ursúa Medrano, Pablo; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Las redes convolucionales llevan a cabo un proceso automatico de extracción y fusión de características mediante el cual obtienen la información más relevante de una imagen dada. El proceso de submuestreo mediante el cual se fusionan características localmente próximas, conocido como ‘pooling’, se lleva a cabo tradicionalmente con funciones sencillas como el máximo o la media aritmética, ignorando otras opciones muy populares en el campo de la teoría de agregaciones. En este trabajo proponemos reemplazar dichas funciones por otra serie de ordenes estadísticos, así como por la integral de Sugeno y una nueva generalización de la misma. Además, basándonos en trabajos que emplean la combinación convexa del máximo y la media, presentamos una nueva capa que permite combinar varias de las nuevas agregaciones, mejorando sus resultados individuales.
  • PublicationOpen Access
    Interval subsethood measures with respect to uncertainty for the interval-valued fuzzy setting
    (Atlantis Press, 2020) Pekala, Barbara; Bentkowska, Urszula; Sesma Sara, Mikel; Fernández Fernández, Francisco Javier; Lafuente López, Julio; Altalhi, A. H.; Knap, Maksymilian; Bustince Sola, Humberto; Pintor Borobia, Jesús María; Estatistika, Informatika eta Matematika; Ingeniaritza; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Ingeniería
    In this paper, the problem of measuring the degree of subsethood in the interval-valued fuzzy setting is addressed. Taking into account the widths of the intervals, two types of interval subsethood measures are proposed. Additionally, their relation and main properties are studied. These developments are made both with respect to the regular partial order of intervals and with respect to admissible orders. Finally, some construction methods of the introduced interval subsethood measures with the use interval-valued aggregation functions are examined.
  • PublicationOpen Access
    Directions of directional, ordered directional and strengthened ordered directional increasingness of linear and ordered linear fusion operators
    (IEEE, 2019) Sesma Sara, Mikel; Marco Detchart, Cedric; Lafuente López, Julio; Roldán López de Hierro, Antonio Francisco; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work we discuss the forms of monotonicity that have been recently introduced to relax the monotonicity condition in the definition of aggregation functions. We focus on directional, ordered directional and strengthened ordered directional monotonicity, study their main properties and provide some results about their links and relations among them. We also present two families of functions, the so-called linear fusion functions and ordered linear fusion functions and we study the set of directions for which these types of functions are directionally, ordered directionally and strengthened ordered directionally increasing. In particular, OWA operators are an example of ordered linear fusion functions.
  • PublicationOpen Access
    Strengthened ordered directional and other generalizations of monotonicity for aggregation functions
    (Springer, 2018) Sesma Sara, Mikel; Miguel Turullols, Laura de; Lafuente López, Julio; Barrenechea Tartas, Edurne; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    A tendency in the theory of aggregation functions is the generalization of the monotonicity condition. In this work, we examine the latest developments in terms of different generalizations. In particular, we discuss strengthened ordered directional monotonicity, its relation to other types of monotonicity, such as directional and ordered directional monotonicity and the main properties of the class of functions that are strengthened ordered directionally monotone. We also study some construction methods for such functions and provide a characterization of usual monotonicity in terms of these notions of monotonicity.
  • PublicationOpen Access
    Curve-based monotonicity: a generalization of directional monotonicity
    (Taylor & Francis, 2019) Roldán López de Hierro, Antonio Francisco; Sesma Sara, Mikel; Špirková, Jana; Lafuente López, Julio; Pradera, Ana; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    In this work we propose a generalization of the notion of directional monotonicity. Instead of considering increasingness or decreasingness along rays, we allow more general paths defined by curves in the n-dimensional space. These considerations lead us to the notion of α-monotonicity, where α is the corresponding curve. We study several theoretical properties of α-monotonicity and relate it to other notions of monotonicity, such as weak monotonicity and directional monotonicity.
  • PublicationOpen Access
    Some properties and construction methods for ordered directionally monotone functions
    (IEEE, 2017-08-24) Sesma Sara, Mikel; Marco Detchart, Cedric; Bustince Sola, Humberto; Barrenechea Tartas, Edurne; Lafuente López, Julio; Kolesárová, Anna; Mesiar, Radko; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    In this work we propose a new generalization of the notion of monotonicity, the so-called ordered directionally monotonicity. With this new notion, the direction of increasingness or decreasingness at a given point depends on that specific point, so that it is not the same for every value on the domain of the considered function.
  • PublicationOpen Access
    Strengthened ordered directionally monotone functions. Links between the different notions of monotonicity
    (Elsevier, 2019) Sesma Sara, Mikel; Lafuente López, Julio; Roldán López de Hierro, Antonio Francisco; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    In this work, we propose a new notion of monotonicity: strengthened ordered directional monotonicity. This generalization of monotonicity is based on directional monotonicity and ordered directional monotonicity, two recent weaker forms of monotonicity. We discuss the relation between those different notions of monotonicity from a theoretical point of view. Additionally, along with the introduction of two families of functions and a study of their connection to the considered monotonicity notions, we define an operation between functions that generalizes the Choquet integral and the Lukasiewicz implication.