Person: Militino, Ana F.
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Militino
First Name
Ana F.
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
0000-0002-0631-3919
person.page.upna
220
Name
6 results
Search Results
Now showing 1 - 6 of 6
Publication Open Access Machine learning procedures for daily interpolation of rainfall in Navarre (Spain)(Springer, 2023) Militino, Ana F.; Ugarte Martínez, María Dolores; Pérez Goya, Unai; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2Kriging is by far the most well known and widely used statistical method for interpolating data in spatial random fields. The main reason is that it provides the best linear unbiased predictor and it is an exact interpolator when normality is assumed. The robustness of this method allows small departures from normality, however, many meteorological, pollutant and environmental variables have extremely asymmetrical distributions and Kriging cannot be used. Machine learning techniques such as neural networks, random forest, and k-nearest neighbor can be used instead, because they do not require specific distributional assumptions. The drawback is that they do not take account of the spatial dependence, and for an optimal performance in spatial random fields more complex machine learning techniques could be considered. These techniques also require a relatively large amount of training data and they are computationally challenging to implement. For a reduced number of observations, we illustrate the performance of the aforementioned procedures using daily rainfall data of manual meteorological gauge stations in Navarre, where the only auxiliary variables available are the spatial coordinates and the altitude. The quality of the predictions is carefully checked through three versions of the relative root mean squared error (RRMSE). The conclusion is that when we cannot use Kriging, random forest and neural networks outperform k-nearest neighbor technique, and provide reliable predictions of rainfall daily data with scarce auxiliary information.Publication Open Access Logistic regression versus XGBoost for detecting burned areas using satellite images(Springer, 2024) Militino, Ana F.; Goyena Baroja, Harkaitz; Pérez Goya, Unai; Ugarte Martínez, María Dolores; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaClassical statistical methods prove advantageous for small datasets, whereas machine learning algorithms can excel with larger datasets. Our paper challenges this conventional wisdom by addressing a highly significant problem: the identification of burned areas through satellite imagery, that is a clear example of imbalanced data. The methods are illustrated in the North-Central Portugal and the North-West of Spain in October 2017 within a multi-temporal setting of satellite imagery. Daily satellite images are taken from Moderate Resolution Imaging Spectroradiometer (MODIS) products. Our analysis shows that a classical Logistic regression (LR) model competes on par, if not surpasses, a widely employed machine learning algorithm called the extreme gradient boosting algorithm (XGBoost) within this particular domain.Publication Open Access Unpaired spatio-temporal fusion of image patches (USTFIP) from cloud covered images(Elsevier, 2023) Goyena Baroja, Harkaitz; Pérez Goya, Unai; Montesino San Martín, Manuel; Militino, Ana F.; Wang, Qunming; Atkinson, Peter M.; Ugarte Martínez, María Dolores; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2Spatio-temporal image fusion aims to increase the frequency and resolution of multispectral satellite sensor images in a cost-effective manner. However, practical constraints on input data requirements and computational cost prevent a wider adoption of these methods in real case-studies. We propose an ensemble of strategies to eliminate the need for cloud-free matching pairs of satellite sensor images. The new methodology called Unpaired Spatio-Temporal Fusion of Image Patches (USTFIP) is tested in situations where classical requirements are progressively difficult to meet. Overall, the study shows that USTFIP reduces the root mean square error by 2-to-13% relative to the state-of-the-art Fit-FC fusion method, due to an efficient use of the available information. Implementation of USTFIP through parallel computing saves up to 40% of the computational time required for Fit-FC.Publication Open Access Locally adaptive change-point detection (LACPD) with applications to environmental changes(Springer, 2021) Moradi, Mohammad Mehdi; Montesino San Martín, Manuel; Ugarte Martínez, María Dolores; Militino, Ana F.; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasWe propose an adaptive-sliding-window approach (LACPD) for the problem of change-point detection in a set of time-ordered observations. The proposed method is combined with sub-sampling techniques to compensate for the lack of enough data near the time series’ tails. Through a simulation study, we analyse its behaviour in the presence of an early/middle/late change-point in the mean, and compare its performance with some of the frequently used and recently developed change-point detection methods in terms of power, type I error probability, area under the ROC curves (AUC), absolute bias, variance, and root-mean-square error (RMSE). We conclude that LACPD outperforms other methods by maintaining a low type I error probability. Unlike some other methods, the performance of LACPD does not depend on the time index of change-points, and it generally has lower bias than other alternative methods. Moreover, in terms of variance and RMSE, it outperforms other methods when change-points are close to the time series’ tails, whereas it shows a similar (sometimes slightly poorer) performance as other methods when change-points are close to the middle of time series. Finally, we apply our proposal to two sets of real data: the well-known example of annual flow of the Nile river in Awsan, Egypt, from 1871 to 1970, and a novel remote sensing data application consisting of a 34-year time-series of satellite images of the Normalised Difference Vegetation Index in Wadi As-Sirham valley, Saudi Arabia, from 1986 to 2019. We conclude that LACPD shows a good performance in detecting the presence of a change as well as the time and magnitude of change in real conditions.Publication Open Access Using RGISTools to estimate water levels in reservoirs and lakes(MDPI, 2020) Militino, Ana F.; Montesino San Martín, Manuel; Pérez Goya, Unai; Ugarte Martínez, María Dolores; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasThe combination of freely accessible satellite imagery from multiple programs improves the spatio-temporal coverage of remote sensing data, but it exhibits barriers regarding the variety of web services, file formats, and data standards. Ris an open-source software environment with state-of-the-art statistical packages for the analysis of optical imagery. However, it lacks the tools for providing unified access to multi-program archives to customize and process the time series of images. This manuscript introduces RGISTools, a new software that solves these issues, and provides a working example on water mapping, which is a socially and environmentally relevant research field. The case study uses a digital elevation model and a rarely assessed combination of Landsat-8 and Sentinel-2 imagery to determine the water level of a reservoir in Northern Spain. The case study demonstrates how to acquire and process time series of surface reflectance data in an efficient manner. Our method achieves reasonably accurate results, with a root mean squared error of 0.90 m. Future improvements of the package involve the expansion of the workflow to cover the processing of radar images. This should counteract the limitation of the cloud coverage with multi-spectral images.Publication Open Access On the performances of trend and change-point detection methods for remote sensing data(MDPI, 2020) Militino, Ana F.; Moradi, Mohammad Mehdi; Ugarte Martínez, María Dolores; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasDetecting change-points and trends are common tasks in the analysis of remote sensing data. Over the years, many different methods have been proposed for those purposes, including (modified) Mann-Kendall and Cox-Stuart tests for detecting trends; and Pettitt, Buishand range, Buishand U, standard normal homogeneity (Snh), Meanvar, structure change (Strucchange), breaks for additive season and trend (BFAST), and hierarchical divisive (E. divisive) for detecting change-points. In this paper, we describe a simulation study based on including different artificial, abrupt changes at different time-periods of image time series to assess the performances of such methods. The power of the test, type I error probability, and mean absolute error (MAE) were used as performance criteria, although MAE was only calculated for change-point detection methods. The study reveals that if the magnitude of change (or trend slope) is high, and/or the change does not occur in the first or last time-periods, the methods generally have a high power and a low MAE. However, in the presence of temporal autocorrelation, MAE raises, and the probability of introducing false positives increases noticeably. The modified versions of the Mann-Kendall method for autocorrelated data reduce/moderate its type I error probability, but this reduction comes with an important power diminution. In conclusion, taking a trade-off between the power of the test and type I error probability, we conclude that the original Mann-Kendall test is generally the preferable choice. Although Mann-Kendall is not able to identify the time-period of abrupt changes, it is more reliable than other methods when detecting the existence of such changes. Finally, we look for trend/change-points in land surface temperature (LST), day and night, via monthly MODIS images in Navarre, Spain, from January 2001 to December 2018.