Person:
López Martín, Antonio

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

López Martín

First Name

Antonio

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

ORCID

0000-0001-7629-0305

person.page.upna

2254

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Single-stage class-AB non-linear current mirror OTA
    (IEEE, 2022) Beloso Legarra, Javier; Cruz Blas, Carlos Aristóteles de la; López Martín, Antonio; Institute of Smart Cities - ISC
    The analysis, design and experimental characterization of a single-stage class-AB operational transconductance amplifier (OTA) with enhanced large- and small-signal performance is presented. The OTA is biased in weak inversion to save power and employs a non-linear current mirror as active load, leading a boosting current directly at the output branch. As a result, the amplifier's performance is improved without additional circuit elements and/or power consumption. A chip prototype has been fabricated in a 180-nm CMOS process, consuming a quiescent power of 2.5 µW from a supply voltage of ±0.5 V and a silicon area of 0.0013 mm 2 . For a load of 160 pF, it exhibits an average slew rate of 0.94 V/µs and a gain-bandwidth product of 22.1 kHz.
  • PublicationOpen Access
    Power-efficient single-stage class-AB OTA based on non-linear nested current mirrors
    (IEEE, 2023) Beloso Legarra, Javier; Cruz Blas, Carlos Aristóteles de la; López Martín, Antonio; Institute of Smart Cities - ISC
    A novel approach to design low-power area-efficient rail-to-rail output single-stage class-AB operational transconductance amplifiers (OTAs) with enhanced large- and small-signal performance to drive large capacitive loads is presented. It is based on a non-linear nested current mirror at the active load of a splitted differential input pair biased in weak inversion that boosts dynamic currents beyond their quiescent value directly at the output branch. As a result, slew rate, DC gain, gainbandwidth product, settling time and noise performance are improved without additional circuit elements or power consumption. An OTA prototype has been fabricated in a 180-nm CMOS process, consuming a quiescent power of 2.9 µW from a supply voltage of ±0.5 V and a silicon area of 0.001 mm2 . Measurement results validate the advantages of the proposal, exhibiting positive and negative slew rates of 110 V/ms and −58 V/ms, respectively, and a gain-bandwidth product of 136 kHz with a phase margin of 90◦ for a capacitive load of 160 pF.