Millor Muruzábal, Nora

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Millor Muruzábal

First Name

Nora

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    An evaluation of the 30-s chair stand test in older adults: frailty detection based on kinematic parameters from a single inertial unit
    (BioMed Central, 2013) Millor Muruzábal, Nora; Lecumberri Villamediana, Pablo; Gómez Fernández, Marisol; Martínez Ramírez, Alicia; Izquierdo Redín, Mikel; Matemáticas; Ciencias de la Salud; Matematika; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    Background: A growing interest in frailty syndrome exists because it is regarded as a major predictor of co-morbidities and mortality in older populations. Nevertheless, frailty assessment has been controversial, particularly when identifying this syndrome in a community setting. Performance tests such as the 30-second chair stand test (30-s CST) are a cornerstone for detecting early declines in functional independence. Additionally, recent advances in body-fixed sensors have enhanced the sensors’ ability to automatically and accurately evaluate kinematic parameters related to a specific movement performance. The purpose of this study is to use this new technology to obtain kinematic parameters that can identify frailty in an aged population through the performance the 30-s CST. Methods: Eighteen adults with a mean age of 54 years, as well as sixteen pre-frail and thirteen frail patients with mean ages of 78 and 85 years, respectively, performed the 30-s CST while threir trunk movements were measured by a sensor-unit at vertebra L3. Sit-stand-sit cycles were determined using both acceleration and orientation information to detect failed attempts. Movement-related phases (i.e. impulse, stand-up, and sit-down) were differentiated based on seat off and seat on events. Finally, the kinematic parameters of the impulse, stand-up and sit-down phases were obtained to identify potential differences across the three frailty groups. Results: For the stand-up and sit-down phases, velocity peaks and “modified impulse” parameters clearly differentiated subjects with different frailty levels (p < 0.001). The trunk orientation range during the impulse phase was also able to classify a subject according to his frail syndrome (p < 0.001). Furthermore, these parameters derived from the inertial units (IUs) are sensitive enough to detect frailty differences not registered by the number of completed cycles which is the standard test outcome. Conclusions: This study shows that IUs can enhance the information gained from tests currently used in clinical practice, such as the 30-s CST. Parameters such as velocity peaks, impulse, and orientation range are able to differentiate between adults and older populations with different frailty levels. This study indicates that early frailty detection could be possible in clinical environments, and the subsequent interventions to correct these disabilities could be prescribed before further degradation occurs.
  • PublicationOpen Access
    Frailty assessment based on trunk kinematic parameters during walking
    (BioMed Central, 2015) Martínez Ramírez, Alicia; Martinikorena Aranburu, Ion; Gómez Fernández, Marisol; Lecumberri Villamediana, Pablo; Millor Muruzábal, Nora; Rodríguez Mañas, Leocadio; García García, Francisco José; Izquierdo Redín, Mikel; Matemáticas; Matematika
    Background: Physical frailty has become the center of attention of basic, clinical and demographic research due to its incidence level and gravity of adverse outcomes with age. Frailty syndrome is estimated to affect 20 % of the population older than 75 years. Thus, one of the greatest current challenges in this field is to identify parameters that can discriminate between vulnerable and robust subjects. Gait analysis has been widely used to predict frailty. The aim of the present study was to investigate whether a collection of parameters extracted from the trunk acceleration signals could provide additional accurate information about frailty syndrome. Methods: A total of 718 subjects from an elderly population (319 males, 399 females; age: 75.4 ± 6.1 years, mass: 71.8 ± 12.4 kg, height: 158 ± 6 cm) volunteered to participate in this study. The subjects completed a 3-m walk test at their own gait velocity. Kinematic data were acquired from a tri-axial inertial orientation tracker. Findings: The spatio-temporal and frequency parameters measured in this study with an inertial sensor are related to gait disorders and showed significant differences among groups (frail, pre-frail and robust). A selection of those parameters improves frailty classification obtained to gait velocity, compared to classification model based on gait velocity solely. Interpretation: Gait parameters simultaneously used with gait velocity are able to provide useful information for a more accurate frailty classification. Moreover, this technique could improve the early detection of pre-frail status, allowing clinicians to perform measurements outside of a laboratory environment with the potential to prescribe a treatment for reversing their physical decline.