Goicoechea Fernández, Javier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Goicoechea Fernández

First Name

Javier

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    A comparative study of two different approaches for the incorporation of silver nanoparticles into layer-by-layer films
    (Springer, 2014) Rivero Fuente, Pedro J.; Goicoechea Fernández, Javier; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work, a comparative study about the incorporation of silver nanoparticles (AgNPs) into thin films is presented using two alternative methods, the in situ synthesis process and the layer-by-layer embedding deposition technique. The influence of several parameters such as color of the films, thickness evolution, thermal post-treatment, or distribution of the AgNPs along the coatings has been studied. Thermal post-treatment was used to induce the formation of hydrogel-like AgNPs-loaded thin films. Cross-sectional transmission electron microscopy micrographs, atomic force microscopy images, and UV-vis spectra reveal significant differences in the size and distribution of the AgNPs into the films as well as the maximal absorbance and wavelength position of the localized surface plasmon resonance absorption bands before and after thermal post-treatment. This work contributes for
  • PublicationOpen Access
    An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles
    (Springer, 2011) Rivero Fuente, Pedro J.; Urrutia Azcona, Aitor; Goicoechea Fernández, Javier; Ruiz Zamarreño, Carlos; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work a novel antibacterial surface composed of an organic-inorganic hybrid matrix of tetraorthosilicate and a polyelectrolyte is presented. A precursor solution of tetraethoxysilane (TEOS) and poly(acrylic acid sodium salt) (PAA) was prepared and subsequently thin films were fabricated by the dip-coating technique using glass slides as substrates. This hybrid matrix coating is further loaded with silver nanoparticles using an in situ synthesis route. The morphology and composition of the coatings have been studied using UV-VIS spectroscopy and atomic force microscopy (AFM). Energy dispersive X-ray (EDX) was also used to confirm the presence of the resulting silver nanoparticles within the thin films. Finally the coatings have been tested in bacterial cultures of genus Lactobacillus plantarum to observe their antibacterial properties. It has been experimentally demonstrated that these silver loaded organic-inorganic hybrid films have a very good antimicrobial behavior against this type of bacteria.
  • PublicationOpen Access
    An antibacterial surface coating composed of PAH/SiO2 nanostructurated films by Layer by Layer
    (2009) Urrutia Azcona, Aitor; Rivero Fuente, Pedro J.; Ruete Ibarrola, Leyre; Goicoechea Fernández, Javier; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Gobierno de Navarra / Nafarroako Gobernua
    In this article we propose a novel antibacterial coating composed of SiO2 and the polymer Poly(allylamine hydrochloride) (PAH) on glass slides by the technique Layer-by- Layer (LbL)1. This technique has already used in previous works, and it has the advantage that it allows to control the construction of nanosized and well organized multilayer films. In this work, the new nanotexturized LbL SiO2 surface acts as antibacterial agent. The fabricated coatings have been tested in bacterial cultures of genus Lactobacillus to observe their antibacterial properties.