Goicoechea Fernández, Javier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Goicoechea Fernández

First Name

Javier

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Self-referenced optical fiber sensor based on LSPR generated by gold and silver nanoparticles embedded in layer-by-layer nanostructured coatings
    (MDPI, 2022) Martínez Hernández, María Elena; Goicoechea Fernández, Javier; Rivero Fuente, Pedro J.; Sandúa Fernández, Xabier; Arregui San Martín, Francisco Javier; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this work, an optical fiber sensor based on the localized surface plasmon resonance (LSPR) phenomenon has been designed for the detection of two different chemical species (mercury and hydrogen peroxide) by using Layer-by-Layer Embedding (LbL-E) as a nanofabrication technique. In the first step, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) have been synthesized by using a chemical protocol as a function of the strict control of three main parameters, which were polyelectrolyte concentration, a loading agent, and a reducing agent. In the second step, their incorporation into nanometric thin films have been demonstrated as a function of the number of bilayers, which shows two well-located absorption peaks associated to their LSPR in the visible region at 420 nm (AgNPs) and 530 nm (AuNPs). Finally, both plasmonic peaks provide a stable real-time reference measurement, which can be extracted from the spectral response of the optical fiber sensor, which shows a specific sensing mechanism as a function of the analyte of study.
  • PublicationOpen Access
    An optical fiber sensor for Hg2+ detection based on the LSPR of silver and gold nanoparticles embedded in a polymeric matrix as an effective sensing material
    (MDPI, 2021-07-07) Martínez Hernández, María Elena; Sandúa Fernández, Xabier; Rivero Fuente, Pedro J.; Goicoechea Fernández, Javier; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work, an optical fiber sensor based on the localized surface plasmon resonance (LSPR) phenomenon is presented as a powerful tool for the detection of heavy metals (Hg2+). The resultant sensing film was fabricated using a nanofabrication process, known as layer-by-layer embedding (LbL-E) deposition technique. In this sense, both silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized using a synthetic chemical protocol as a function of a strict control of three main parameters: polyelectrolyte concentration, loading agent, and reducing agent. The use of metallic nanostructures as sensing materials is of great interest because well-located absorption peaks associated with their LSPR are obtained at 420 nm (AgNPs) and 530 nm (AuNPs). Both plasmonic peaks provide a stable real-time reference that can be extracted from the spectral response of the optical fiber sensor, giving a reliable monitoring of the Hg2+ concentration.