Person: Oneca Agurruza, María
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Oneca Agurruza
First Name
María
person.page.departamento
Ciencias de la Salud
person.page.instituteName
ORCID
0000-0003-0949-4804
person.page.upna
7251
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Antidiabetic effects of Pediococcus acidilactici pA1c on HFD-induced mice(MDPI, 2022) Cabello Olmo, Miriam; Oneca Agurruza, María; Pajares Villandiego, María Josefa; Jiménez, Maddalen; Ayo, Josune; Encío Martínez, Ignacio; Barajas Vélez, Miguel Ángel; Araña Ciordia, Miriam; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2020-000086Prediabetes (PreD), which is associated with impaired glucose tolerance and fasting blood glucose, is a potential risk factor for type 2 diabetes mellitus (T2D). Growing evidence suggests the role of the gastrointestinal microbiota in both PreD and T2D, which opens the possibility for a novel nutritional approach, based on probiotics, for improving glucose regulation and delaying disease progression of PreD to T2D. In this light, the present study aimed to assess the antidiabetic properties of Pediococcus acidilactici (pA1c) in a murine model of high-fat diet (HFD)-induced T2D. For that purpose, C57BL/6 mice were given HFD enriched with either probiotic (1 × 1010 CFU/day) or placebo for 12 weeks. We determined body weight, fasting blood glucose, glucose tolerance, HOMA-IR and HOMA-β index, C-peptide, GLP-1, leptin, and lipid profile. We also measured hepatic gene expression (G6P, PEPCK, GCK, IL-1β, and IL-6) and examined pancreatic and intestinal histology (% of GLP-1+ cells, % of goblet cells and villus length). We found that pA1c supplementation significantly attenuated body weight gain, mitigated glucose dysregulation by reducing fasting blood glucose levels, glucose tolerance test, leptin levels, and insulin resistance, increased C-peptide and GLP-1 levels, enhanced pancreatic function, and improved intestinal histology. These findings indicate that pA1c improved HFD-induced T2D derived insulin resistance and intestinal histology, as well as protected from body weight increase. Together, our study proposes that pA1c may be a promising new dietary management strategy to improve metabolic disorders in PreD and T2D.Publication Open Access A fermented food product containing lactic acid bacteria protects ZDF rats from the development of type 2 diabetes(MDPI, 2019) Cabello Olmo, Miriam; Oneca Agurruza, María; Torre Hernández, Paloma; Sainz, Neira; Moreno Aliaga, María J.; Guruceaga, Elizabeth; Díaz, Jesús Vicente; Encío Martínez, Ignacio; Barajas Vélez, Miguel Ángel; Araña Ciordia, Miriam; Ciencias de la Salud; Osasun Zientziak; Ciencias; Zientziak; Gobierno de Navarra / Nafarroako GobernuaType 2 diabetes (T2D) is a complex metabolic disease, which involves a maintained hyperglycemia due to the development of an insulin resistance process. Among multiple risk factors, host intestinal microbiota has received increasing attention in T2D etiology and progression. In the present study, we have explored the effect of long-term supplementation with a non-dairy fermented food product (FFP) in Zucker Diabetic and Fatty (ZDF) rats T2D model. The supplementation with FFP induced an improvement in glucose homeostasis according to the results obtained from fasting blood glucose levels, glucose tolerance test, and pancreatic function. Importantly, a significantly reduced intestinal glucose absorption was found in the FFP-treated rats. Supplemented animals also showed a greater survival suggesting a better health status as a result of the FFP intake. Some dissimilarities have been observed in the gut microbiota population between control and FFP-treated rats, and interestingly a tendency for better cardiometabolic markers values was appreciated in this group. However, no significant differences were observed in body weight, body composition, or food intake between groups. These findings suggest that FFP induced gut microbiota modifications in ZDF rats that improved glucose metabolism and protected from T2D development.Publication Open Access Pediococcus acidilactici pA1c® improves the beneficial effects of metformin treatment in type 2 diabetes by controlling glycaemia and modulating intestinal microbiota(MDPI, 2023) Cabello Olmo, Miriam; Oneca Agurruza, María; Urtasun Alonso, Raquel; Pajares Villandiego, María Josefa; Goñi Irigoyen, Saioa; Riezu Boj, José I.; Milagro Yoldi, F. I.; Ayo, Josune; Encío Martínez, Ignacio; Barajas Vélez, Miguel Ángel; Araña Ciordia, Miriam; Ciencias de la Salud; Osasun ZientziakType 2 diabetes (T2D) is a complex metabolic disease, which involves maintained hyperglycemia, mainly due to the development of an insulin resistance process. Metformin administration is the most prescribed treatment for diabetic patients. In a previously published study, we demonstrated that Pediococcus acidilactici pA1c® (pA1c) protects from insulin resistance and body weight gain in HFD-induced diabetic mice. The present work aimed to evaluate the possible beneficial impact of a 16-week administration of pA1c, metformin, or the combination of pA1c and metformin in a T2D HFD-induced mice model. We found that the simultaneous administration of both products attenuated hyperglycemia, increased high-intensity insulin-positive areas in the pancreas and HOMA-β, decreased HOMA-IR and also provided more beneficial effects than metformin treatment (regarding HOMA-IR, serum C-peptide level, liver steatosis or hepatic Fasn expression), and pA1c treatment (regarding body weight or hepatic G6pase expression). The three treatments had a significant impact on fecal microbiota and led to differential composition of commensal bacterial populations. In conclusion, our findings suggest that P. acidilactici pA1c® administration improved metformin beneficial effects as a T2D treatment, and it would be a valuable therapeutic strategy to treat T2D.