Insausti Barrenetxea, Kizkitza

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Insausti Barrenetxea

First Name

Kizkitza

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 1 of 1
  • PublicationOpen Access
    Combination of spectral and textural features of hyperspectral imaging for the authentication of the diet supplied to fattening cattle
    (Elsevier, 2024) León Ecay, Sara; Insausti Barrenetxea, Kizkitza; Arazuri Garín, Silvia; Goenaga Uceda, Irantzu; López Maestresalas, Ainara; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This study explored the potential of hyperspectral imaging in the near infrared region (NIR-HSI) as a non-destructive and rapid tool to discriminate among two beef fattening diets. For that purpose, a feeding trial was carried out with a total of 24 purebred Pirenaica calves. Twelve of them were fed barley and straw (BS) while 11 animals were finished on vegetable by-products (VBPR). When comparing the reference measurements of the meat coming from those animals, only the total collagen ratio expressed the feeding effect (p-value<0.05). To undertake the authentication procedure, two discrimination approaches were run: partial least squares discriminant analysis (PLS-DA) and radial basis function-support vector machine (RBF-SVM). To precisely extract spectral and textural information from the lean portion of the meat steaks, various techniques were executed, such as principal component (PC) images, competitive adaptive reweighted sampling (CARS) for selecting optimal wavelengths, and gray-level-co-occurrence matrix (GLCM). After hyperspectral imaging and the combination of their own texture features, samples were classified according to feeding diet with an overall accuracy of 72.92% for PLS-DA and 80.56% for RBF-SVM. So, the potential of using HSI technology to authenticate the meat obtained from beef supplied a diet based on circular economy techniques was made in evidence.