López Rodríguez, José Javier
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
López Rodríguez
First Name
José Javier
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
16 results
Search Results
Now showing 1 - 10 of 16
Publication Open Access Determinación de las curvas IDF en Igueldo-San Sebastián. Comparación de diferentes métodos(Universidad Politécnica de Valencia, 2018) López Rodríguez, José Javier; Delgado Zabala, Oihane; Campo-Bescós, Miguel; Ingeniería; IngeniaritzaLas curvas de intensidad-duración-frecuencia (IDF) son una herramienta fundamental en ingeniería hidrológica. Se ha partido de la serie de precipitación de 88 años registrada cada diez minutos en la estación meteorológica de Igueldo (San Sebastián). Después de aplicar varios test para comprobar la homogeneidad y la no estacionariedad de la serie de precipitación, se determinaron las curvas IDF mediante un análisis de frecuencia con el programa Hydrognomon. Dichas curvas se compararon con las obtenidas a partir de la serie simulada con el modelo estocástico de Barlett-Lewis Modificado (MBL) y con las estimadas mediante la ecuación de Témez. El objetivo de este trabajo es la evaluación de estas dos últimas metodologías. Las curvas y los yetogramas generados con la expresión de Témez presentaron un buen ajuste a partir de periodos de retorno, T, mayores a 20 años. No fueron tan buenos los obtenidos a partir de la serie simulada con MBL.Publication Open Access Assessment of the flood mitigation ecosystem service in a coastal wetland and potential impact of future urban development in Chile(Elsevier, 2022) Rojas, Octavio; Soto, Evelyn; Rojas, Carolina; López Rodríguez, José Javier; Ingeniería; IngeniaritzaA worldwide increase in flooding due to climate change and population growth in exposed areas is expected, especially in coastal areas; therefore, nature-based solutions (NBS) for risk reduction are necessary to increase the resilience of cities, particularly in developing countries, which usually lack large budgets for structural measures but have natural areas such as wetlands that can be used as NBS. The flood mitigation ecosystem service of a coastal wetland in central Chile was analyzed. Using hydrological and topo-bathymetric data, two flood hazard scenarios were modeled: (i) S1 current and (ii) S2 projected, which was established based on land-use planning instruments and urban projects developed since 1954. Flood hazard maps for different return periods were obtained and indicators related to the mitigation potential of the wetland were calculated. It was proven that urban project development has intensified since 2000, mainly in the form of real estate development, with an increase in occupation of 50%, and the wetland area is projected to be further reduced by around one third, decreasing potential flood mitigation. Thus, for an extreme return period, in this case 500 years, the water volume stored by the wetland would decrease by more than 38% and the flooded area of the wetland by 30%, increasing flooding and vulnerability of the urban area, with various repercussions for surrounding neighborhoods and infrastructure. The number of people and homes affected would increase by around 6% and 8%, respectively, such that the affected land value would reach an additional US$55 million, which would be very detrimental in a city that has seen its natural spaces encroached upon by gray infrastructure. This research reaffirms the need to support the restoration and conservation of coastal wetlands under pressure from urban development in an area with a lack of green infrastructure planning.Publication Open Access Development of a water flow and velocity optical fiber sensor for field testing(Optica Publishing Group, 2022) Rodríguez Rodríguez, Armando; Urroz Unzueta, José Carlos; Diéguez Elizondo, Pedro; Bravo Acha, Mikel; López-Amo Sáinz, Manuel; López Rodríguez, José Javier; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenA water flow and velocity fiber optic sensor system was developed and tested. The sensing head was especially developed and ruggedized to measure velocities at different depths, in order to calculate the discharge in channels.Publication Open Access Design of optical fiber Bragg grating-based sensors for flow measurement in pipes(Taylor & Francis, 2023) Diéguez Elizondo, Pedro; Rodríguez Rodríguez, Armando; Urroz Unzueta, José Carlos; López Rodríguez, José Javier; López-Amo Sáinz, Manuel; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIn this work, optical Fiber Bragg grating (FBG) sensors were used to measure water flow in pipes. Several types of coatings were incorporated into the design of the sensors to examine their effects on the elastic strain that the fiber underwent as a result of the water flow. ANSYS-CFX V2020 R2 software was used to model the elastic strain encountered by the fiber under various flow rates in order to assess the performance of the FBG sensors. The calculations and experimental data exhibited good convergence, demonstrating the accuracy of the FBG sensors in determining water flow. These calculations and procedures can be extrapolated to any other fluid.Publication Open Access Optical fiber sensor for water velocity measurement in rivers and channels(Nature Research, 2024) Rodríguez Rodríguez, Armando; Diéguez Elizondo, Pedro; Urroz Unzueta, José Carlos; Bravo Acha, Mikel; López Rodríguez, José Javier; López-Amo Sáinz, Manuel; Ingeniería; Ingeniaritza; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCIn this work, optical fiber Bragg grating sensors were used to measure water velocity and examine how it was distributed in open channels. Several types of coatings were incorporated into the design of the sensors to examine their effects on the strain that the fibers experienced as a result of the water flow. Due to their low elastic coefficient, which reduced the hysteresis, the results indicated that the aluminum- and acrylate-coated fibers had the best performance. ANSYS-CFX V2020 R2 software was used to model the strain encountered by the fibers under various flow rates to assess the performance of the FBG sensors. The calculations and actual data exhibited good convergence, demonstrating the accuracy of the FBG sensors in determining water velocity. The study illustrated the usability of the proposal in both scenarios by contrasting its application in rivers and channels.Publication Open Access Microstructured optical fiber sensor for soil moisture measurements(Optical Society of America, 2018) López Aldaba, Aitor; López Torres, Diego; Campo-Bescós, Miguel; López Rodríguez, José Javier; Yerro Lizarazu, David; Elosúa Aguado, César; Arregui San Martín, Francisco Javier; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; IngenieríaA discrete sensor based on a Sn0₂-FP (Fabry-Pérot) cavity is presented and characterized in real soil conditions. Results are compared, for the first time to our knowledge, with a commercial capacitive sensor and gravimetric measurements.Publication Open Access Distributed humidity sensor for moisture-front monitoring in soils(Optica, 2020) Leandro González, Daniel; Delgado Zabala, Oihane; López Rodríguez, José Javier; Bravo Acha, Mikel; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn this contribution, high spatial resolution distributed humidity sensing was demonstrated for moisture-front monitoring in soils by using polyimide coated optical fiber.Publication Open Access Geomorphological instantaneous unit hydrograph model with distributed rainfall(Elsevier, 2019) Goñi Garatea, Mikel; López Rodríguez, José Javier; Gimena Ramos, Faustino; Ingeniería; IngeniaritzaTwo variants of the Instantaneous Unit Hydrograph model based on a Geomorphological association of linear Reservoirs (IUHGR), incorporating the Spatial Variability of Rainfall (SVR), have been developed. The proposed models are based on the Geomorphological Reservoirs (GR) scheme consisting of a cascade of linear reservoirs aggregating sub-watersheds. The model, in its first version, was formulated so that it incorporated a spatial variability pattern of rainfall associated with a certain frequency and oriented towards its application in the field of hydrological design. This model was considered to be stationary in the time (GRSVR(s)) for being linked to some design conditions. The second version of the model is applicable to the simulation of real events, where there is a dynamic (GRSVR(m)) spatial distribution of rainfall that varies in time, as in the case of the movement of rainstorms. Both models permit the input of relevant information on the spatial variability of the rainfall, taken from different rain gauge records, without losing the simplicity of the GR model with a single parameter, which represents the hydrological time response of the watershed. The models have been calibrated and validated with the data from one gauged watershed in northern Spain. The analysis conducted in both cases showed that the models which contemplated the spatial variability of the rainfall, GRSVR(s) and GRSVR(m), were capable of simulating rainfall variability effects in the surface runoff hydrograph better than the GR model, which averages the precipitation values recorded in the different rain gauges.Publication Open Access The transformation of a trade fair and exhibition centre into a field hospital for COVID-19 patients via multi-utility tunnels(Elsevier, 2021) Valdenebro García, José Vicente; Gimena Ramos, Faustino; López Rodríguez, José Javier; Ingeniería; IngeniaritzaThis article exposes, through the case study of the IFEMA trade fair and exhibition centre in Madrid (Spain), the benefits of using a multi-utility tunnels (MUTs) system as a smart and sustainable solution for the distribution of utility networks in buildings, or in complexes made up of several buildings, to enable their quick and continuous adaptation. The saturation of the health system in the capital of Spain, motivated by the COVID-19 pandemic, forced the authorities in Madrid to improvise an emergency centre in this building. The multi-utility tunnels system was the key enabling element to deploy the necessary networks, including those for medical gases, to convert several exhibition halls into a field hospital with a maximum capacity of 5000 conventional beds and another 500 Intensive Care Unit beds, in just 100 h.Publication Open Access Construction process for the implementation of urban utility tunnels in historic centres(Elsevier, 2019) Valdenebro García, José Vicente; Gimena Ramos, Faustino; López Rodríguez, José Javier; Ingeniería; IngeniaritzaNowadays, there are many cities that have chosen to build urban utility tunnels (UUTs) in new urban enlargements to house and order the large number of utility networks that should be located in the subsoil. UUTs are a smart and sustainable solution for the future because, in spite of its high initial cost in comparison with the traditional burial system, enable preventive, predictive and corrective maintenance much more agile, less annoying and less expensive. However, only in exceptional cases municipal authorities have opted to use this type of underground constructions as a key element for the renewal and regeneration of the historical centres of their cities. The main reason for this is the constructive difficulty that is added to the higher cost of the initial investment. The origin of this difficulty is mainly motivated because: these urban areas are inhabited and, therefore, utility networks must be maintained in operation during the construction works; the streets are very narrow, which makes the execution of works and the movement of vehicles and machines difficult while at the same time allowing access for people to homes and businesses; and most of the buildings next to the construction site work have poor quality foundations and structures, so opening deep trenches in their proximity implies taking great risks. This paper proposes a construction process to be followed for the implementation of UUTs in historic centres under the premise of maintaining utilities without interruptions during the works and, at the same time, guaranteeing the security of workers, inhabitants, consumers and pre-existing properties. This construction process has been used in the urban renewal works of the historic centre of Pamplona (Spain).