Person:
Espuelas Zuazu, Sandra

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Espuelas Zuazu

First Name

Sandra

person.page.departamento

Ingeniería

person.page.instituteName

ORCID

0000-0003-1223-515X

person.page.upna

811351

Name

Search Results

Now showing 1 - 10 of 14
  • PublicationOpen Access
    Assessment of the ability of MGO based binary binders for the substitution of Portland cement for mortars manufacturing
    (Elsevier, 2022) Seco Meneses, Andrés; Espuelas Zuazu, Sandra; Marcelino Sádaba, Sara; Echeverria Lazcano, Angel María; Del Castillo García, Jesús María; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua
    This article evaluates the ability of a magnesia kiln dust (PC-8) and a commercial calcined MgO (MCB100), combined with ground granulated blastfurnace slag (GGBS), as constituents of binary M-S-H binders. Mortars and pastes were manufactured and their properties were compared to those of Portland Cement (PC). MgO-based mortars showed an increase in setting time and higher fresh consistency. At earlier ages MgO mortars showed lower mechanical properties. At 90 days both MgO-based mortars overcame the PC flexural strength and PC-8 + GGBS also overcame its compressive strength. X-Ray Diffraction and Thermogravimetry tests demonstrated the presence of M-S-H in the pastes.
  • PublicationOpen Access
    Magnesium oxide as alternative binder for unfired clay bricks manufacturing
    (Elsevier, 2017) Espuelas Zuazu, Sandra; Omer, Joshua; Marcelino Sádaba, Sara; Echeverria Lazcano, Angel María; Seco Meneses, Andrés; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Replacement of fired bricks by unfired ones could be an effective way to reduce the building industryenvironmental footprint: Their manufacture not only requires less energy and natural resources but alsogenerates less waste. Bricks are based on the use of an additive cementitious material in the form of a binder,usually lime or cement. Such additives have a great environmental impact owing to the high energy consumptionand CO2during in their manufacturing process. In this article experiments are carried out in order to investigatethe applicability of a MgO rich industry by-product as a binder for the production of unfired clay bricks. Fromthe experiments, the MgO was observed to show ability to enhance the mechanical properties of a clay brick inmuch the same way as lime does. Water absorption tests on bricks revealed the superiority of MgO over lime inenhancing the durability properties of unfired bricks. The laboratory results demonstrate the high potential ofMgO based additives as alternative binders to the calcium based ones. Consequently, this offers opportunity forreducing the environmental impact associated with the use of fired clay bricks. In addition, it could allow aneffective way for the valorization of MgO containing industry by-products that currently discarded to landfills
  • PublicationOpen Access
    Characterization of fresh and cured properties of polymer concretes based on two metallurgical wastes
    (MDPI, 2020) Seco Meneses, Andrés; Echeverria Lazcano, Angel María; Marcelino Sádaba, Sara; García, Beñat; Espuelas Zuazu, Sandra; Institute of Smart Cities - ISC
    Polyester polymer concretes can substitute conventional concretes based on their usually good mechanical strength, adequate physical properties, and high resistance against aggressive chemical environments. They also show a high potential for using recycled targets in their manufacturing. This paper analyzes the fresh and cured properties of polyester polymer concretes containing two metallurgical wastes, namely: ladle slag and alumina filler. Both targets require a higher resin dosage than sand. The standard consistency test showed a low representativeness of the recycled fresh mixes’ workability. The ladle slag and alumina filler samples showed a higher length plastic shrinkage than those containing sand. All of the targets obtained cured density values in the range of 1.589–1.912 g/cm3. From a mechanical point of view, the sand and alumina filler containing polyester polymer concretes reached 11.02 and 10.93 kN, respectively, of flexural strength, while the ladle slag samples showed the best result with 19.31 kN. In the compressive strength test, the sand and alumina filler combinations reached 106.16 and 104.21 MPa, respectively, while the ladle slag achieved 160.48 MPa. The flexural and compressive elasticity modulus showed similar trends related to the resin content.
  • PublicationOpen Access
    Technical and environmental characterization of hydraulic and alkaline binders
    (Elsevier, 2018) Espuelas Zuazu, Sandra; Echeverria Lazcano, Angel María; Marcelino Sádaba, Sara; Prieto Cobo, Eduardo; Seco Meneses, Andrés; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2017-000176
    Portland cement is a widely used binder in construction and building applications because of its good properties. Despite its convenience as construction material, the social demands and policies trends are requesting a lower impact and more sustainable cement manufacturing industry. The most effective ways to reach this goal are the substitution of clinker by different wastes or by-products in the cement composition or the development of more sustainable binders like the alkali activated binders. This work analyzes from a technical and environmental point of view the substitution of a clinker based CEM I common cement for the construction mortars manufacturing. Four common cements with different ground granulated blastfurnace slags (GGBS) or fly ashes (FA) contents as well as fifteen alkali activated binders (AAB) combinations were considered. Fresh consistency, density, compressive strength (CS) tests and life cycle analysis were carried out to state the ability of these different hydraulic and alkaline activated binders for the CEM I substitution. The results obtained demonstrated the technical and environmental convenience of these binders for the construction mortars manufacturing.
  • PublicationOpen Access
    Stabilization of a clay soil using cementing material from spent refractories and ground-granulated blast furnace slag
    (MDPI, 2021) Seco Meneses, Andrés; Del Castillo García, Jesús María; Espuelas Zuazu, Sandra; Marcelino Sádaba, Sara; García Gracianteparaluceta, Beñat; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC
    Nowadays, huge amounts of refractory materials are generated around the world. The majority of them lack valorization methods. This study analyzes the ability of a doloma and two magnesia spent refractory wastes as soil stabilizers on their own, as well as when combined with Ground-Granulated Blast Furnace Slags (GGBS). These materials showed a limited ability for the soil’s plasticity modification from a plasticity index of 15.6 to a minimum of 12.7. The high pH of the additives increased the soil’s pH from 7.88 to values in the range of 10.94–11.25 before the 28 days, allowing the development of the pozzolanic reactions. Unconfined compressive strength (UCS) increased along the curing time, reaching a maximum value of 5.68 MPa after 90 days. Based on the UCS, the optimum refractory GGBS ratios oscillate between 30:70 and 50:50. The UCS values after soaking samples reduced the unsoaked results between 68.70% to 94.41%. The binders considered showed a low effect against the soil swelling and the lack of delayed expansive effects because of the MgO hydration. Finally, X Ray Diffraction (XRD) tests showed that the stabilization only slightly modified the combinations of mineralogy and the formation of Magnesium Silicate Hydrate (MSH) gels.
  • PublicationOpen Access
    Sustainable unfired bricks manufacturing from construction and demolition wastes
    (Elsevier, 2018) Seco Meneses, Andrés; Omer, Joshua; Marcelino Sádaba, Sara; Espuelas Zuazu, Sandra; Prieto Cobo, Eduardo; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak
    The management of construction and demolition wastes is a huge challenge for most Governments. Thegreatest component of such wastes is concrete and masonry fragments or remains. Among the most com-mon approaches to valorization of such w astes is to convert them to recycled aggregates, however thismay be hampered by low quality of some recycled aggregates compared to natural aggregates. This paperpresents the results of experimental investigation where concrete and ceramic remains were used to par-tially substitute clay soil in producing unfired bricks. The bricks were then tested for mechanical strength,water absorption freeze-thaw resistance. Additionally the environmental impact of the bricks wasassessed based on Life Cycle Analysis (LCA). It was established that concrete waste could be used to sub-stitute up to 50% of the clay whereas ceramic wastes could only substitute a maximum of 30% of the clay.Blended bricks made from clay and concrete waste mixes had a lower mechanical strength than thosemade from clay and ceramic waste. As regards water absorption, there was no marked differencebetween the two blends of brick however reduction in water resistance was slightly greater in bricks con-taining concrete waste that in those containing ceramic wastes. Also, tests showed that freeze-thawresistance was greater in bricks blended with concrete wastes than in those incorporating ceramicwastes. Life Cycle analyses demonstrated that it is the binder content in the mix that largely determinesthe environmental impact of the blended bricks. Lastly, it was demonstrated that the most desirable tech-nical and environmental credentials of brick material mixes resulted from using the binder combination:CL-90-S+GGBS 2/8.
  • PublicationOpen Access
    Sulphate soil stabilisation with magnesium binders for road subgrade construction
    (Taylor and Francis, 2020) Seco Meneses, Andrés; Espuelas Zuazu, Sandra; Marcelino Sádaba, Sara; García, Beñat; Del Castillo García, Jesús María; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua
    This paper analyzes the ability of magnesium oxide-based additives to stabilise a low bearing gypsum marly soil, in order to reach subgrade requirements. This soil was not adequate for stabilisation with lime or cement because of its high sulphate content. Binders considered in this investigation were composed of three reactive Mg products and by products, both with and without ground granulated blast furnace slags (GGBS). They were compared to two cements and an aerial lime as soil stabilisers in a laboratory investigation and a field trial. Laboratory tests showed that Mg products with GGBS reached strength results close and at times even better than those of cement. One of the Mg products was the only additive able to reduce the natural soil swelling. Leaching tests demonstrated the ability of the Mg products to reduce the soil leaching of substances like calcium, magnesium, sulphate and chloride. In field trials two of the Mg products combined with GGBS met the bearing capacity requirements for subgrades, in accordance with the Spanish standard.
  • PublicationOpen Access
    Recycled granulates manufacturing from spent refractory wastes and magnesium based binder
    (Elsevier, 2023) Seco Meneses, Andrés; Del Castillo García, Jesús María; Perlot, Céline; Marcelino Sádaba, Sara; Espuelas Zuazu, Sandra; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC
    This paper analyzes the ability of two Spent Refractory Wastes (SRW) for the manufacturing of recycled granulates for construction applications. A binary magnesium oxide and ground granulated blast furnace slag hydraulic binder was considered as an agglomerating agent for the granulates manufacturing. Influence of curing atmosphere was carried out: in air, 20 % CO2 and 100 % CO2 atmosphere up to 28 days. Granulometry, thermal analysis, particle density, bulk density, water absorption and mechanical strength tests were performed to characterize the granulates. SRW showed their ability for the granulates manufacturing. Results demonstrated the existence of a residual reactivity of the wastes considered. A direct relationship between the CO2 content of the curing atmosphere and the granulates hydration degree was observed. Carbonation process increased from 7 days to 28 days and direct relationships were observed between the CO2 content and the carbonation degree as well as between the binder dosage and the carbonation degree. CO2 curing reduced the water absorption and increased the compressive strength of the granulates.
  • PublicationOpen Access
    Valorization of insulation cellulose waste as solid biomass fuel
    (MDPI, 2021) Espuelas Zuazu, Sandra; Marcelino Sádaba, Sara; García, Beñat; Seco Meneses, Andrés; Del Castillo García, Jesús María; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua
    This paper investigates the ability of insulation cellulose fiber powder (CFP) to be pelletized for its valorization as biomass fuel. CFP is a waste originating from insulation cellulose manufacturing that lacks any method of valorization because of its boron salts content. A sugar byproduct and lignosulfonate (LS) were considered as binders for the pellet manufacturing process. Physical tests were carried out to characterize the pellets’ performance. Chemical and combustion tests were considered to state the pellets’ potential as a green energy source. Raw CFP showed good ability in its pelletization and durability in the range of 15–30% of moisture content. The pellet’s density decreased as water content increased. Binders increased the pellet’s length before and after the durability test. Binders also increased the CFP pellet’s water absorption, demonstrating a potential decrease in durability against environmental factors. Binders also decreased the lower heating value. Ultimate analysis showed a slight Nitrogen increase in both binder combinations that could potentially raise the pollutant NOx combustion emissions. All the combinations showed adequate combustion characteristics, but binders increased ash production. Additives decreased the CFP volatile matter content and increased the fixed carbon, which could facilitate a more stable combustion. DTA curves showed a mass loss rate decrease in the volatile stage for the binder combinations, which also could be considered as an indicator of a more stable combustion. The ashes’ chemical compositions when analyzed by XPS showed boron contents oscillating between 10.03% and 16.42%, demonstrating the possibility of recovering them from the combustion ashes.
  • PublicationOpen Access
    Durability of polyester polymer concretes based on metallurgical wastes for the manufacture of construction and building products
    (Elsevier, 2020) Seco Meneses, Andrés; Echeverria Lazcano, Angel María; Marcelino Sádaba, Sara; García, Beñat; Espuelas Zuazu, Sandra; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería
    Varied target materials can be incorporated into polyester polymer concretes (PPC). This allows natural aggregates to be substituted for different waste products in non-structural polymeric construction and building materials. Many studies have explored the mechanical properties of waste-based PPC, but the durability and surface resistance of these materials is not fully known. In this study, we compared the suitability of two metallurgical wastes to that of two natural aggregates for manufacturing durable PPC products. Durability against environmental conditions, durability against chemical products, and surface strength against physical damage were tested. Durability against environmental conditions was characterised according to visual damage and mechanical strength losses after freezing-thawing; no PPC combinations exhibited surface damage following the ageing cycles. The ladle slag (LS) samples exhibited the best pre- and post-test flexural and compressive strength. The properties of the alumina filler (AF) combinations exhibited the highest flexural and compressive strength losses after freezing-thawing. The calcareous sand combinations were damaged most severely by acid, while LS and AF exhibited good resistance against chemical substances. The LS combinations exhibited the highest surface strength against impacts in the rebound number test, while the results obtained for the AF combinations were close to those of natural aggregates. The surface resistance against scratching depended on the resin, not on the target material.