Ederra Urzainqui, Íñigo

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Ederra Urzainqui

First Name

Íñigo

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 19
  • PublicationOpen Access
    New hexagonal CORPS-BFN for multibeam antenna applications
    (IEEE, 2020) Biurrun Quel, Carlos; Montesano, Antonio; Ederra Urzainqui, Íñigo; Iriarte Galarregui, Juan Carlos; Río Bocio, Carlos del; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    This work presents a new topology of a Coherently Radiating Periodic Structure - Beam Forming Network (CORPS-BFN) and its application for multibeam systems. A unit cell, consisting of a transition from a coaxial input to an intersection of three strip-lines with an angular span of 120 degrees, is proposed and analysed. A periodical replication of the cell gives rise to a uniform layer, allowing a proper matching of the ports of the network. Stacked layers allow in-phase propagation and distribution of the energy through the structure, increasing the number of output ports with each layer.
  • PublicationOpen Access
    A wide beamwidth magneto-electric dipole atenna for wide beam scanning antenna arrays
    (IEEE, 2024-09-30) Khan, Ihtesham; Zhao, Huiling; Iriarte Galarregui, Juan Carlos; Ederra Urzainqui, Íñigo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza
    In this study, a simple and cost-effective configuration to broaden the beamwidths of the patch antenna has been studied. The proposed wide beamwidths antenna consists of two parasitic magnetic dipoles placed orthogonally to a driven electric dipole. Due to the complementary far-field radiation behaviors of both antennas in their respective E-plane and H-plane, the antenna half-power beamwidth broadens. An excellent wide beam of 138.6° and 110.9° in E-plane and H-plane, respectively, has been achieved at 4.72 GHz. The proposed antenna has been fabricated and tested. Measurements shows good agreement with the simulations. The proposed antenna can find its application for the increasing the scanning coverage of the patch antenna arrays.
  • PublicationOpen Access
    Research on metamaterials for antenna applications
    (2005) Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Iriarte Galarregui, Juan Carlos; Martínez Pascual, Beatriz; Sáenz Sáinz, Elena; Cantora Álvarez, Pablo; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    During the last 20 years a lot of attention has been paid to apply Electromagnetic Band Gap (EBG) technology in different frequency ranges, from microwaves to optics. EBG technology is based on the use of periodic structures to prevent the electromagnetic propagation in certain frequency ranges, known as the bandgap [1]. In the last years the new and revolutionary field of Metamaterials is trying to be applied to similar applications. Although different, both technologies have some similitudes as it has been proven for different authors. For instance when working with EBG structures Left-Handed properties can be obtained in some frequency ranges. In this paper, research efforts focussed on applying EBG technology and the more recent Metamaterials, in particular, left-handed materials, to antenna subsystems at microwave and (sub)millimetre wave frequencies are introduced.
  • PublicationOpen Access
    A new ABS conductive material to develop fully 3D-printed patch antennas
    (IEEE, 2023) Jiménez Peña, Javier; Irigoyen, Joseba; Aresti Bartolomé, Maite; Ederra Urzainqui, Íñigo; Bravo Larrea, Javier; Iriarte Galarregui, Juan Carlos; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Additive manufacturing technology is rapidly overcoming some of its initial limitations and, thus, creating a very useful engineering option for prototyping complex geometries for a wide range of electronic devices. Based on important advantages such as turn-around, reliability, material waste reduction, and low implementation costs, the technology is being continuously developed and improved. This paper presents a completely 3D-printed microstrip patch antenna to demonstrate the feasibility of a new conductive Acrylonitrile Butadiene Styrene (ABS) material in the fabrication of three-dimensional (3D) antennas using additive manufacturing method. The prototype of the antenna has been fabricated using Raise3D E2 printer, commercial ABS and a new ABS filament developed by Naitec for dielectric and conductive parts of the antenna, respectively. The fabricated antenna is compact and light. Preliminary prototypes and fabrication techniques are presented.
  • PublicationOpen Access
    Broadband radar cross-section reduction using AMC technology
    (IEEE, 2013) Iriarte Galarregui, Juan Carlos; Tellechea Pereda, Amagoia; Martínez de Falcón, José Luis; Ederra Urzainqui, Íñigo; Gonzalo García, Ramón; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    This paper presents the design, fabrication and characterization of a planar broadband chessboard structure to reduce the radar cross-section (RCS) of an object. The chessboard like configuration is formed by combining two artificial magnetic conductor (AMC) cells. The bandwidth limitations intrinsic to AMC structures are overcome in this work by properly selecting the phase slope versus frequency of both AMC structures. 180 degrees phase difference has been obtained over more than 40% frequency bandwidth with a RCS reduction larger than 10dB. The influence of the incidence angle in the working bandwidth has been performed. A good agreement between simulations and measurements is achieved.
  • PublicationOpen Access
    A water content continuous monitoring of grapevine xylem tissue using a portable low-power cost-effective FMCW radar
    (IEEE, 2019) Quemada Mayoral, Carlos; García González, Cebrián; Iriarte Galarregui, Juan Carlos; Marín Ederra, Diana; Gastón Beraza, Diego; Miranda Jiménez, Carlos; Gonzalo García, Ramón; Maestrojuán Biurrun, Itziar; Santesteban García, Gonzaga; Ederra Urzainqui, Íñigo; Agronomia, Bioteknologia eta Elikadura; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Agronomía, Biotecnología y Alimentación; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, PI025 VITHZ; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2016-000084 RAFF
    This paper presents the real-time monitoring of a grapevine’s water content that flows up through the xylem tissue by means of a frequency-modulated continuous-wave (FMCW) radar. The application of an optimization process, based on the super-resolution multiple signal classification (MUSIC) algorithm, has enabled the reduction of the bandwidth required to discern the xylem water content, and thus the operating frequency, achieving a depth resolution of at least 3 mm. This design advantage has resulted in a significant step forward towards a real life application, allowing the use of fully-integrated off-the-shelf components in order to implement a completely portable low-power cost-effective radar at 23.1 GHz with a 3.4 GHz bandwidth. The sensor performance has been evaluated by means of three different experiments: irrigation cycles, day/night cycles and comparison between irrigation cycles at different temperatures. From the experimental results, it is possible to assert that the contactless sensor presented in this work is very sensitive to changes in the plant’s water content, differentiating between daytime and nighttime. In addition, it has been proved that temperature has a noticeable influence over the evapotranspiration, observing negative drying slopes of 5.62 mV/cycle and 6.28 mV/cycle at 23ºC and 26ºC respectively.
  • PublicationEmbargo
    Experimental validation of a Ku-band dual circularly polarized metasurface antenna
    (IEEE, 2018) Tellechea Pereda, Amagoia; Caminita, Francesco; Martini, Enrica; Ederra Urzainqui, Íñigo; Teniente Vallinas, Jorge; Iriarte Galarregui, Juan Carlos; Gonzalo García, Ramón; Maci, Stefano; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    The experimental validation of a Ku-band dual circularly polarized (CP) broadside-beam metasurface (MTS) antenna is presented. A radially modulated anisotropic single layer MTS has been synthesised employing sub-wavelength elliptical slotted metallic patches printed on top of a thin Arlon grounded substrate. In the structure, two decoupled phasematched transverse magnetic and transverse electric surface waves (SWs) are excited, which interact with the modulated surface leading to a CP broadside radiation. Two different orthomode transducers have been designed to excite the SWs with orthogonal polarization and equal amplitude. The first feeding system is composed of a metallic stepped septum inside an airfilled square waveguide. A conical section is included to match the output port of the square waveguide with the terminal, dielectric filled circular waveguide. The second feed is much more compact and efficient and it is composed of a circular waveguide completely filled by a dielectric. Depending on the input port excited on the feeds, two TE11 modes are excited with ±90° phase shift, which determine the right-hand or left-hand sense of the broadside beam generated by the MTS. Manufacturing details of the MTS and excitations are given and the measurements are compared with the simulation results. Finally, conclusions are drawn.
  • PublicationOpen Access
    Advanced feeds for mm-wave antenna systems
    (Springer, 2018) Teniente Vallinas, Jorge; Iriarte Galarregui, Juan Carlos; Ederra Urzainqui, Íñigo; Gonzalo García, Ramón; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Millimeter-wave antenna systems have traditionally required high performance feeds in order to fulfill its stringent requirements. Therefore, this goal has been achieved by corrugated horns. However, in the last years new applications mainly in the communication systems have driven the use of other types of antenna feed with slightly reduced performance but simpler manufacturing at mm-wave and submm-wave frequencies with improvements in cost reduction. These advanced profiles are usually based in smooth waveguide advanced profiles. Besides, the chapter describes different feed configurations based on metamaterial structures and several examples of metamaterial based or inspired antennas are considered. Then, this chapter covers the different alternatives currently used for mm-wave antenna feed: corrugated horns, spline horns, and metamaterial horns. At the end of each section, it includes some research successful results.
  • PublicationOpen Access
    Hexagonal CORPS-BFN to feed OLAF SAR instrument
    (IEEE, 2021) Biurrun Quel, Carlos; Iriarte Galarregui, Juan Carlos; Ederra Urzainqui, Íñigo; Río Bocio, Carlos del; Institute of Smart Cities - ISC
    The concept of Coherently Radiating Periodic Structures-based Beam Forming Networks is applied to feed OLAF (OverLapped SubArray Fed) antenna for SAR Instrument at L-Band. The proper feeding of this system requires the multiple beams to be highly overlapped, and that is generated by a CORPS-BFN using a new 4-port Gysel power combiner/divider implemented in a suspended stripline technology. The network provides high isolation between inputs/outputs, low insertion loss, great return loss and the desired ovelapping of the different beams.
  • PublicationOpen Access
    EBG superstrate antenna for WAAS bands
    (2008) Osés de León, Ángel; Iriarte Galarregui, Juan Carlos; Ederra Urzainqui, Íñigo; Gonzalo García, Ramón; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Multiband antennas can simplify considerably the complexity of receivers and transmitters, reducing the size and the mass of the conventional configurations. On the other hand, applications with high directivity requirements need array designs to comply with the directivity specifications using conventional technology. EBG superstrate designs have been satisfactory applied to single band applications using a single EBG superstrate layer. The number of number of radiating elements of conventional technology designs are considerably reduced when using EBG technology. Dual band configurations have also been designed in a single layer, but when working frequencies are too close a second EBG layer is needed. A dual layer EBG superstrate which can easily be adjusted to the desired operational frequencies is presented. The design has been realized to comply with the navigation antenna requirements of Wide Area Augmentation system (WAAS) application in L1 and L2 bands.